BV and BFV formalism beyond perturbation theory

Based on joint works w/ Benini-Safronov [2104.14886] and Benini-Pridham [2201.10225]

What is derived geometry?

- Traditional geometric frameworks, such as manifolds or schemes, are incapable to describe certain important geometric objects:
- (i) Quotients by non-free group actions:

and ignores in how many ways points get identified, e.g.

(ii) Non-transversal intersections:

$$X_{1} \underset{Y}{\times} X_{z} \text{ is in general singular, e.g.}$$

$$Y = \mathbb{R}^{3}, \quad X_{1} = \begin{cases} (x_{1}y_{1}z) \in \mathbb{R}^{3} : z = 0 \end{cases}, \quad X_{z} = \begin{cases} (x_{1}y_{1}z) \in \mathbb{R}^{3} : (xy)^{2} = z \end{cases}$$

$$\longrightarrow \quad X_{1} \underset{Y}{\times} X_{z} = \begin{cases} (x_{1}y_{1}z) \in \mathbb{R}^{3} : z = 0 \text{ and } (xy)^{2} = 0 \end{cases}$$

and ignores intersection multiplicities, e.g.

1

Derived (algebraic) geometry resolves these issues by introducing a refined and powerful concept of space called derived stacks.

To get some intuition, we have to recall functors of points:

2

schemes and more (what you get from glueing)

Interpretation of a functor

• $\chi(\mathbb{R}^\circ) = "$ points in χ''

•
$$X(\mathbb{R}^{1}) =$$
 "curres in X''

• $X(\mathbb{R}^2) =$ "surfaces in X''.

Derived stacks have a richer functor of points:

BRST/BV/BFV/... = perturbative/formal aspects of derived geometry:

Los-algebra (or DGC Aly)

Application 1: Nonperturbative (classical and finite dim.) BV formalism

3

Physical scenario and motivation:

A physical system is typically described by

1.) a space of fields X

2.) an action of the gauge group $X \times G \longrightarrow X$

3.) a gauge-invariant action function $S: X \longrightarrow \mathbb{K}$

Want to determine the space of extrema of S modulo gauge symmetries, which involves taking quotients χ/G and intersections $\mathcal{L}^{dR}S = \mathcal{O}$.

DAG potentially important for this problem!

Mathematical formalization:

mo

Consider a smooth affine scheme $X = S_{Pec}A$ with an action $X \times G \longrightarrow X$ of a smooth affine group scheme $G = S_{Pec}H$.

A gauge-invariant function $S: X \longrightarrow |K|$ is the same datum as a function S: $[X/G] \longrightarrow |K|$ on the quotient stack

$$[X/G] := colim (X \rightleftharpoons XxG \rightleftharpoons XxG^2 \rightleftharpoons ...) \in dSt.$$

The derived critical locus is defined as the pullback in JSH

$$\frac{dCrit(S)}{dRS} \xrightarrow{V[X]}{V[X]} \begin{bmatrix} X/G \end{bmatrix} \qquad This solves the intersectionproblem $d^{dR}S = 0$ and
also counts multiplicities
and stabilizers $P$$$

Theorem (Benini-Safronov-AS):

 $dCrit(S) \simeq \left[\frac{2}{G}\right] \text{ is a derived quotient stack with } Z = \operatorname{Spec} O(Z).$ the derived affine scheme specified by the function dg-algebra $O(Z) = \operatorname{Sym}_{A} \left(A \otimes \operatorname{gc-ZI}_{autifuelds} \oplus \operatorname{Tac-II}_{autifuelds} \right) \in \operatorname{dg}(Alg_{ZO})$ $\operatorname{drat}_{fields} \operatorname{drat}_{form} \operatorname{drat}_{form}$

Remarks:

- (1) $\mathcal{JCri}(S)$ carries a canonical (-1)-shifted symplectic structure that can be computed via Lagrangian intersections.
- (2) The function dg-algebra can be compared with the BV formalism:

 $O(dC_{i}+(s)) \simeq O([Z/G]) \simeq \operatorname{Tot}^{\mathbb{T}} N^{\bullet}(G, O(Z))$ $Vot \simeq vou Est vou$

(3) The derived stack $\mathcal{J}_{\mathcal{A}} + (S) \simeq [\mathcal{Z}/\mathcal{G}]$ is in general **not** affine, i.e. it is not determined by its function dg-algebra.

This is a new feature of the nonperturbative world!

A richer algebraic invariant is given by its dg-category of modules:

QCoh (dCrit (S)) ~ QCoh ([Z/G]) ~ O(Z), dy Mod G

Application 2: Nonperturbative BFV quantization

Physical scenario:

The phase space of 2nd-order gauge theories is a derived cotangent stack

5

Similarly to before, $p^{-1}(\sigma) = \operatorname{Spec} \mathcal{O}(p^{-1}(\sigma))$ is a derived affine scheme with

$$\mathcal{O}(\mu^{-1}(0)) = Sym_A(T_A + A \otimes g_{F-1}) \in dy(Aly_{\geq 0})$$

Wanted:

Quantization of $\mathcal{T}^*\mathcal{F}X/\mathcal{G}$ along the canonical 0-shifted Poisson structure. How does the resulting $E_o = pointed$ dg-category look like:

$$\operatorname{QGh}(T^*[X/G])_{\mathrm{H}} = 2$$

Strategy:

Turn Pridham's abstract deformation theoretic arguments into a concrete construction! Let me sketch the key ideas:

<u>Step 1:</u> Resolve T*[×/6] ⊂ [r⁻¹()/6] by a diagram of Lie algebra quotients:

This turns the global problem into a family of local stacky affine problems:

$$CE^{\bullet}(q, O(p^{-1}(\omega))) \longrightarrow CE^{\bullet}(q \oplus q, O(p^{-1}(\omega) \times G)) \xrightarrow{\rightarrow} \cdots$$

Step 2: Quantize level-wise via differential operators

$$CE^{\bullet}(q, \mathcal{O}(p^{-1}(\omega))) \xrightarrow{h} \longrightarrow CE^{\bullet}(q \oplus q, \mathcal{O}(p^{-1}(\omega) \times G)) \xrightarrow{h} \xrightarrow{\rightarrow} \cdots$$

and pass over to dg-categories of modules:

$$(\mathbf{F} := \left((\mathbf{y}, \mathcal{O}(\mu^{-1}(\mathbf{o}))) \right)_{\mathbf{h}} d\mathbf{y} M d \xrightarrow{=} (\mathbf{y} \mathbf{e} \mathbf{y}, \mathcal{O}(\mu^{-1}(\mathbf{o}) \times \mathbf{G})) d\mathbf{y} M d \xrightarrow{=} (\mathbf{y} \mathbf{e} \mathbf{y}, \mathcal{O}(\mu^{-1}(\mathbf{o}) \times \mathbf{G})) d\mathbf{y} M d \xrightarrow{=} (\mathbf{y} \mathbf{e} \mathbf{y}, \mathcal{O}(\mu^{-1}(\mathbf{o}) \times \mathbf{G})) d\mathbf{y} M d \xrightarrow{=} (\mathbf{y} \mathbf{e} \mathbf{y}, \mathcal{O}(\mu^{-1}(\mathbf{o}) \times \mathbf{G})) d\mathbf{y} M d \xrightarrow{=} (\mathbf{y} \mathbf{e} \mathbf{y}, \mathcal{O}(\mu^{-1}(\mathbf{o}) \times \mathbf{G})) d\mathbf{y} M d \xrightarrow{=} (\mathbf{y} \mathbf{e} \mathbf{y}, \mathcal{O}(\mu^{-1}(\mathbf{o}) \times \mathbf{G})) d\mathbf{y} M d \xrightarrow{=} (\mathbf{y} \mathbf{e} \mathbf{y}, \mathcal{O}(\mu^{-1}(\mathbf{o}) \times \mathbf{G})) d\mathbf{y} M d \xrightarrow{=} (\mathbf{y} \mathbf{e} \mathbf{y}, \mathcal{O}(\mu^{-1}(\mathbf{o}) \times \mathbf{G})) d\mathbf{y} M d \xrightarrow{=} (\mathbf{y} \mathbf{e} \mathbf{y}, \mathcal{O}(\mu^{-1}(\mathbf{o}) \times \mathbf{G})) d\mathbf{y} M d \xrightarrow{=} (\mathbf{y} \mathbf{e} \mathbf{y}, \mathcal{O}(\mu^{-1}(\mathbf{o}) \times \mathbf{G})) d\mathbf{y} M d \xrightarrow{=} (\mathbf{y} \mathbf{e} \mathbf{y}, \mathcal{O}(\mu^{-1}(\mathbf{o}) \times \mathbf{G})) d\mathbf{y} M d \xrightarrow{=} (\mathbf{y} \mathbf{e} \mathbf{y}, \mathcal{O}(\mu^{-1}(\mathbf{o}) \times \mathbf{G})) d\mathbf{y} M d \xrightarrow{=} (\mathbf{y} \mathbf{e} \mathbf{y}, \mathbf{g} \mathbf{y}) d\mathbf{y} d \xrightarrow{=} (\mathbf{y} \mathbf{e} \mathbf{y}) d\mathbf{y} d \xrightarrow{=} (\mathbf{y} \mathbf{e} \mathbf{y}, \mathbf{g} \mathbf{y}) d\mathbf{y} d \xrightarrow{=} (\mathbf{y} \mathbf{e} \mathbf{y}) d \xrightarrow{=} (\mathbf{y} \mathbf{e} \mathbf{y}) d\mathbf{y} d$$

16

autighosts)

<u>Step 3</u>: Obtain a global quantization by computing the homotopy limit (in dgCat) of the local quantizations:

Theorem (Benini-Pridham-AS):

For G reductive, the following dg-category is a model for $QC_{L}(T^*TX/G1)_{L}$. <u>Objects:</u>

Triples
$$(\mathcal{E}_{0}, \nabla, \Psi)$$
 consisting of
(1) a G-eqv. $O(X)$ [[t]]-dg-module \mathcal{E}_{0} (wore functions)
 W/G -action)

(Z) a G-eqv. dy-connection
$$\nabla: \mathcal{E}_{\bullet} \to \mathcal{N}^{1}(x)[\mathcal{I}_{\bullet}]] \otimes \mathcal{E}_{\bullet}$$

 $\Im(x)\mathcal{I}_{\bullet}\mathcal{I}_{\bullet}]$
 $w.v.t. th d^{dR}$, i.e. $\nabla(\alpha s) = th d^{dR} \otimes s + \alpha \nabla(s)$
 $\operatorname{CCR}: positions and momenta$

These data have to satisfy the following conditions:

(1)
$$\nabla_{v} \nabla_{v} - \nabla_{v} \nabla_{v} = t_{v} \nabla_{v} \nabla_{v}$$

 $\nabla_{v} \Psi_{+} - \Psi_{+} \nabla_{v} = 0$
 $\Psi_{+} \Psi_{+} + \Psi_{+} \nabla_{v} = 0$
(1) $\partial \Psi_{+} + \Psi_{+} \partial = \nabla_{v} * (+) + t_{v} \partial (+)$
(1) $\partial \Psi_{+} + \Psi_{+} \partial = \nabla_{v} * (+) + t_{v} \partial (+)$
(1) $\partial \Psi_{+} + \Psi_{+} \partial = \nabla_{v} * (+) + t_{v} \partial (+)$
(1) $\partial \Psi_{+} + \Psi_{+} \partial = \nabla_{v} * (+) + t_{v} \partial (+)$
(1) $\partial \Psi_{+} + \Psi_{+} \partial = \nabla_{v} * (+) + t_{v} \partial (+)$
(1) $\partial \Psi_{+} + \Psi_{+} \partial = \nabla_{v} * (+) + t_{v} \partial (+)$
(1) $\partial \Psi_{+} + \Psi_{+} \partial = \nabla_{v} * (+) + t_{v} \partial (+)$
(1) $\partial \Psi_{+} + \Psi_{+} \partial = \nabla_{v} * (+) + t_{v} \partial (+)$
(1) $\partial \Psi_{+} + \Psi_{+} \partial = \nabla_{v} * (+) + t_{v} \partial (+)$
(1) $\partial \Psi_{+} + \Psi_{+} \partial = \nabla_{v} * (+) + t_{v} \partial (+)$
(1) $\partial \Psi_{+} + \Psi_{+} \partial = \nabla_{v} * (+) + t_{v} \partial (+)$
(1) $\partial \Psi_{+} + \Psi_{+} \partial = \nabla_{v} * (+) + t_{v} \partial (+)$
(1) $\partial \Psi_{+} + \Psi_{+} \partial = \nabla_{v} * (+) + t_{v} \partial (+)$
(1) $\partial \Psi_{+} + \Psi_{+} \partial = \nabla_{v} * (+) + t_{v} \partial (+)$
(1) $\partial \Psi_{+} + \Psi_{+} \partial = \nabla_{v} * (+) + t_{v} \partial (+)$
(1) $\partial \Psi_{+} + \Psi_{+} \partial = \nabla_{v} * (+) + t_{v} \partial (+)$
(1) $\partial \Psi_{+} + \Psi_{+} \partial = \nabla_{v} * (+) + t_{v} \partial (+)$
(1) $\partial \Psi_{+} + \Psi_{+} \partial = \nabla_{v} * (+) + t_{v} \partial (+)$
(1) $\partial \Psi_{+} + \Psi_{+} \partial = \nabla_{v} * (+) + t_{v} \partial (+)$
(1) $\partial \Psi_{+} + \Psi_{+} \partial = \nabla_{v} * (+) + t_{v} \partial (+)$
(1) $\partial \Psi_{+} + \Psi_{+} \partial = \nabla_{v} * (+) + t_{v} \partial (+)$
(2) $\partial \Psi_{+} + \Psi_{+} \partial (+) + t_{v} \partial (+)$
(2) $\partial \Psi_{+} + \Psi_{+} \partial (+) + t_{v} \partial (+)$
(2) $\partial \Psi_{+} + \Psi_{+} \partial (+) + t_{v} \partial (+)$
(2) $\partial \Psi_{+} + \Psi_{+} \partial (+) + t_{v} \partial (+)$
(3) $\partial \Psi_{+} + \Psi_{+} \partial (+) + t_{v} \partial (+)$
(4) $\partial \Psi_{+} + \Psi_{+} \partial (+) + t_{v} \partial (+)$
(5) $\partial \Psi_{+} + \Psi_{+} \partial (+) + t_{v} \partial (+)$
(5) $\partial \Psi_{+} + \Psi_{+} \partial (+) + t_{v} \partial (+)$
(5) $\partial \Psi_{+} + \Psi_{+} \partial (+) + t_{v} \partial (+)$
(5) $\partial \Psi_{+} + \Phi_{+} \partial (+) + t_{v} \partial (+)$
(6) $\partial \Psi_{+} + \Phi_{+} \partial (+) + t_{v} \partial (+)$
(7) $\partial \Psi_{+} + \Phi_{+} \partial (+) + t_{v} \partial (+)$
(8) $\partial \Psi_{+} + \Phi_{+} \partial (+) + t_{v} \partial (+) + t_{v} \partial (+)$
(7) $\partial \Psi_{+} + \Phi_{+} \partial (+) + t_{v} \partial (+) + t$

7

Morphisms:

$$\frac{hom}{([\mathcal{E}_{\bullet},\nabla,\psi),(\mathcal{E}_{\bullet}',\nabla',\psi')]} := \frac{hom}{O(X)} \frac{G_{\bullet}\nabla_{\bullet}\psi}{O(X)} (\mathcal{E}_{\bullet},\mathcal{E}_{\bullet}')$$
preserving the $G_{\bullet}\nabla_{\bullet}\psi$ structures strictly.

Remark:

This result can be used to construct a dg-categorified lattice AQFT for non-Abelian Yang-Mills theory on directed graphs: