
BV and BFV formalism beyond perturbation theory
Based on joint works w/ Benini-Safronov [2104.14886] and Benini-Pridham [2201.10225]

What is derived geometry?

Traditional geometric frameworks, such as manifolds or schemes, 
are incapable to describe certain important geometric objects:

(i) Quotients by non-free group actions:

                is in general singular, e.g.

   and ignores in how many ways points get identified, e.g.

(ii) Non-transversal intersections:

                          is in general singular, e.g.

    and ignores intersection multiplicities, e.g.
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Derived (algebraic) geometry resolves these issues by introducing
a refined and powerful concept of space called derived stacks.

To get some intuition, we have to recall functors of points:

affine schemes
(building blocks)

schemes and more
(what you get from glueing)

Interpretation of a functor                                            :

Derived stacks have a richer functor of points:

BRST/BV/BFV/… = perturbative/formal aspects of derived geometry:
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Application 1: Nonperturbative (classical and finite dim.) BV formalism

Physical scenario and motivation:

A physical system is typically described by

1.) a space of fields

2.) an action of the gauge group 

3.) a gauge-invariant action function

Want to determine the space of extrema of        modulo gauge symmetries, 
which involves taking quotients              and intersections

DAG potentially important for this problem!

Mathematical formalization:

Consider a smooth affine scheme                     with an action 

of a smooth affine group scheme                            .

A gauge-invariant function                         is the same datum as a function

                                      on the quotient stack 

The derived critical locus is defined as the pullback in
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Theorem (Benini-Safronov-AS):

                                             is a derived quotient stack with

the derived affine scheme specified by the function dg-algebra

Remarks:

(1)                       carries a canonical (-1)-shifted symplectic structure that 

 can be computed via Lagrangian intersections.

(2) The function dg-algebra can be compared with the BV formalism:

(3) The derived stack                                 is in general not affine, i.e. 

 it is not determined by its function dg-algebra. 

 This is a new feature of the nonperturbative world! 

 A richer algebraic invariant is given by its dg-category of modules:
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Application 2: Nonperturbative BFV quantization

Physical scenario:
The phase space of 2nd-order gauge theories is a derived cotangent stack

Similarly to before,                                       is a derived affine scheme with

Wanted:

Quantization of                       along the canonical 0-shifted Poisson structure.

How does the resulting  E  = pointed  dg-category look like:

Strategy:

Turn Pridham’s abstract deformation theoretic arguments into a concrete

construction! Let me sketch the key ideas:

Step 1: Resolve                                  by a  diagram of Lie algebra quotients:

This turns the global problem into a family of local stacky affine problems:
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Step 2: Quantize level-wise via differential operators

and pass over to dg-categories of modules:

Step 3: Obtain a global quantization by computing the homotopy limit 

(in dgCat) of the local quantizations:

Theorem (Benini-Pridham-AS):

For      reductive, the following dg-category is a model for 
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These data have to satisfy the following conditions :



Morphisms: 

Remark:

This result can be used to construct a dg-categorified lattice AQFT for

non-Abelian Yang-Mills theory on directed graphs:
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