Derived Algebraic Geometry in Mathematical Physics

Alexander Schenkel

School of Mathematical Sciences, University of Nottingham

Interactions and Applications of Homotopical Algebra and Geometry, November 14–16, 2022, University of Luxembourg.

Joint with Benini/Safronov [2104.14886] and Benini/Pridham [2201.10225].

 Traditional frameworks, such as manifolds or schemes, are incapable to describe certain important geometric objects:

- Traditional frameworks, such as manifolds or schemes, are incapable to describe certain important geometric objects:
 - (i) Quotients by non-free group actions:

X/G is in general singular. It also ignores in how many ways points get identified, e.g.

pt/G = pt independently of G

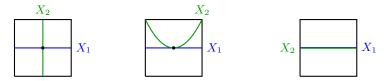
- Traditional frameworks, such as manifolds or schemes, are incapable to describe certain important geometric objects:
 - (i) Quotients by non-free group actions:

X/G is in general singular. It also ignores in how many ways points get identified, e.g.

pt/G = pt independently of G

(ii) Non-transversal intersections:

 $X_1 \times_Y X_2$ is in general singular. It also ignores intersection multiplicities (in the case of manifolds) and may violate the codimension addition rule, e.g.

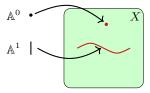


◊ Derived (algebraic) geometry [Lurie; Toën/Vezzosi; Pridham; ...] resolves these issues by introducing a refined concept of space called derived stacks.

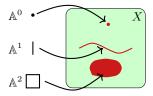
- Derived (algebraic) geometry [Lurie; Toën/Vezzosi; Pridham; ...] resolves these issues by introducing a refined concept of space called derived stacks.
- ◊ To get some intuition, we have to recall the functor of points perspective
 X : Aff^{op} = CAlg → Set

- Derived (algebraic) geometry [Lurie; Toën/Vezzosi; Pridham; ...] resolves these issues by introducing a refined concept of space called derived stacks.
- ◊ To get some intuition, we have to recall the functor of points perspective
 X : Aff^{op} = CAlg → Set

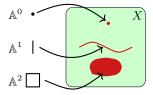
- Derived (algebraic) geometry [Lurie; Toën/Vezzosi; Pridham; ...] resolves these issues by introducing a refined concept of space called derived stacks.
- ◊ To get some intuition, we have to recall the functor of points perspective
 X : Aff^{op} = CAlg → Set



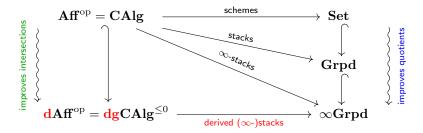
- Derived (algebraic) geometry [Lurie; Toën/Vezzosi; Pridham; ...] resolves these issues by introducing a refined concept of space called derived stacks.
- ◊ To get some intuition, we have to recall the functor of points perspective
 X : Aff^{op} = CAlg → Set



- Derived (algebraic) geometry [Lurie; Toën/Vezzosi; Pridham; ...] resolves these issues by introducing a refined concept of space called derived stacks.
- ◊ To get some intuition, we have to recall the functor of points perspective
 X : Aff^{op} = CAlg → Set



Orived stacks have a richer functor of points:



Many problems in mathematical physics require intersections and quotients!

A typical problem is to describe the space of solutions of a variational PDE (\doteq intersection $d^{dR}S = 0$), modulo gauge symmetries (\doteq quotient).

Many problems in mathematical physics require intersections and quotients!

A typical problem is to describe the space of solutions of a variational PDE ($\hat{=}$ intersection $d^{dR}S = 0$), modulo gauge symmetries ($\hat{=}$ quotient).

Warning: Such applications are differential geometric and ∞ -dimensional, so beyond current DAG technology. (There is recent progress by [Steffens].) It is nevertheless interesting to study algebraic and finite-dimensional toy-models.

Many problems in mathematical physics require intersections and quotients!

A typical problem is to describe the space of solutions of a variational PDE ($\hat{=}$ intersection $d^{dR}S = 0$), modulo gauge symmetries ($\hat{=}$ quotient).

Warning: Such applications are differential geometric and ∞ -dimensional, so beyond current DAG technology. (There is recent progress by [Steffens].) It is nevertheless interesting to study algebraic and finite-dimensional toy-models.

Predecessors of DAG were successfully used in physics since the 80s!

It is now understood that the $\mathsf{BRST}/\mathsf{BV}/\mathsf{BFV}/\ldots$ formalisms from physics capture formal (perturbative) aspects of derived geometry:

$$\left\{\begin{array}{l} \text{formal neighborhood of a point} \\ x: \mathrm{pt} \to X \text{ in a derived stack } X \end{array}\right\} \quad \xleftarrow{\text{Lurie}}_{\text{Pridham}} \quad L_{\infty}\text{-algebra}$$

DAG provides a geometric framework for non-perturbative generalizations.

Many problems in mathematical physics require intersections and quotients!

A typical problem is to describe the space of solutions of a variational PDE (\doteq intersection $d^{dR}S = 0$), modulo gauge symmetries (\doteq quotient).

Warning: Such applications are differential geometric and ∞ -dimensional, so beyond current DAG technology. (There is recent progress by [Steffens].) It is nevertheless interesting to study algebraic and finite-dimensional toy-models.

Predecessors of DAG were successfully used in physics since the 80s!

It is now understood that the $\mathsf{BRST}/\mathsf{BV}/\mathsf{BFV}/\ldots$ formalisms from physics capture formal (perturbative) aspects of derived geometry:

$$\left\{\begin{array}{l} \text{formal neighborhood of a point} \\ x: \mathrm{pt} \to X \text{ in a derived stack } X \end{array}\right\} \quad \xleftarrow{\text{Lurie}}_{\text{Pridham}} \quad L_{\infty}\text{-algebra}$$

DAG provides a geometric framework for non-perturbative generalizations.

! Interesting for modern developments in QFT, e.g. in the context of factorization algebras [Costello/Gwilliam; ...] or homotopical algebraic QFT [Benini/AS; ...].

Application 1:

Derived critical locus of a function on a quotient stack

 \diamond The following data provides an algebraic and finite-dimensional toy-model for a field theory with space of fields X, gauge group G and action functional S:

 \diamond The following data provides an algebraic and finite-dimensional toy-model for a field theory with space of fields X, gauge group G and action functional S:

(1) a smooth affine scheme $X = \operatorname{Spec} A$

 \diamond The following data provides an algebraic and finite-dimensional toy-model for a field theory with space of fields X, gauge group G and action functional S:

(1) a smooth affine scheme $X = \operatorname{Spec} A$

(2) an action $X \times G \to X$ of a smooth affine group scheme $G = \operatorname{Spec} H$

 \diamond The following data provides an algebraic and finite-dimensional toy-model for a field theory with space of fields X, gauge group G and action functional S:

(1) a smooth affine scheme $X = \operatorname{Spec} A$

- (2) an action $X \times G \to X$ of a smooth affine group scheme $G = \operatorname{Spec} H$
- (3) a function $S: [X/G] \to \mathbb{A}^1$ on the quotient stack

$$[X/G] := \operatorname{colim} \left(X \rightleftharpoons X \times G \rightleftharpoons X \times G^2 \rightleftharpoons \cdots \right) \in \operatorname{\mathbf{dSt}}$$

 \diamond The following data provides an algebraic and finite-dimensional toy-model for a field theory with space of fields X, gauge group G and action functional S:

(1) a smooth affine scheme
$$X = \operatorname{Spec} A$$

- (2) an action $X \times G \to X$ of a smooth affine group scheme $G = \operatorname{Spec} H$
- (3) a function $S: [X/G] \to \mathbb{A}^1$ on the quotient stack

$$[X/G] := \operatorname{colim} \left(X \rightleftharpoons X \times G \rightleftharpoons X \times G^2 \rightleftharpoons \cdots \right) \in \operatorname{\mathbf{dSt}}$$

◊ Wanted: Explicit model for the space of critical points of S, i.e. the derived critical locus

 \diamond The following data provides an algebraic and finite-dimensional toy-model for a field theory with space of fields X, gauge group G and action functional S:

(1) a smooth affine scheme
$$X = \operatorname{Spec} A$$

- (2) an action $X \times G \to X$ of a smooth affine group scheme $G = \operatorname{Spec} H$
- (3) a function $S: [X/G] \to \mathbb{A}^1$ on the quotient stack

$$[X/G] := \operatorname{colim} \left(X \rightleftharpoons X \times G \rightleftharpoons X \times G^2 \rightleftharpoons \cdots \right) \in \operatorname{\mathbf{dSt}}$$

◊ Wanted: Explicit model for the space of critical points of S, i.e. the derived critical locus

Rem: The case where G = pt is trivial was worked out by [Vezzosi] and formal quotient stacks $[X/\mathfrak{g}]$ for Lie algebras were studied by [Costello/Gwilliam].

Theorem [Benini, Safronov, AS]

The derived critical locus $dCrit(S : [X/G] \to \mathbb{A}^1) \simeq [Z/G]$ is a derived quotient stack with $Z = \operatorname{Spec} \mathcal{O}^{\bullet}(Z)$ the derived affine scheme specified by the CDGA

$$\mathcal{O}^{\bullet}(Z) = \operatorname{Sym}_{A}\left(\mathsf{T}_{A}[1] \oplus (A \otimes \mathfrak{g}[2])\right)$$
$$\partial a = 0 \quad , \quad \partial v = \iota_{v}(\mathrm{d}^{\mathrm{dR}}S) \quad , \quad \partial t = -\iota_{\rho(t)}(\lambda) \quad ,$$

for all $a \in A$, derivations $v \in \mathsf{T}_{A}[1]$ and Lie algebra elements $t \in \mathfrak{g}[2]$. Here $\lambda \in \Omega^{1}(T^{*}X)$ denotes the tautological 1-form and ρ is the induced Lie algebra action on $T^{*}X$.

Theorem [Benini, Safronov, AS]

The derived critical locus $dCrit(S : [X/G] \to \mathbb{A}^1) \simeq [Z/G]$ is a derived quotient stack with $Z = \operatorname{Spec} \mathcal{O}^{\bullet}(Z)$ the derived affine scheme specified by the CDGA

$$\mathcal{O}^{\bullet}(Z) = \operatorname{Sym}_{A}\left(\mathsf{T}_{A}[1] \oplus (A \otimes \mathfrak{g}[2])\right)$$
$$\partial a = 0 \quad , \quad \partial v = \iota_{v}(\mathrm{d}^{\mathrm{dR}}S) \quad , \quad \partial t = -\iota_{\rho(t)}(\lambda) \quad .$$

for all $a \in A$, derivations $v \in \mathsf{T}_{A}[1]$ and Lie algebra elements $t \in \mathfrak{g}[2]$. Here $\lambda \in \Omega^{1}(T^{*}X)$ denotes the tautological 1-form and ρ is the induced Lie algebra action on $T^{*}X$.

Physics note: This result matches the expectations from the BV formalism. In particular, one clearly recognizes the fields A, the anti-fields $T_A[1]$ and the anti-ghosts $\mathfrak{g}[2]$. The ghosts G are encoded non-perturbatively by the quotient stack.

(1) dCrit(S) carries a canonical (-1)-shifted symplectic structure that can be computed explicitly via intersections of derived Lagrangians.

- (1) dCrit(S) carries a canonical (-1)-shifted symplectic structure that can be computed explicitly via intersections of derived Lagrangians.
- (2) $\operatorname{dCrit}(S : [X/G] \to \mathbb{A}^1)$ can be understood as a shifted symplectic reduction of the derived critical locus $\operatorname{dCrit}(\tilde{S} : X \to \mathbb{A}^1)$ without gauge quotient. This was worked out independently and in much detail by [Anel/Calaque].

- (1) dCrit(S) carries a canonical (-1)-shifted symplectic structure that can be computed explicitly via intersections of derived Lagrangians.
- (2) $\operatorname{dCrit}(S : [X/G] \to \mathbb{A}^1)$ can be understood as a shifted symplectic reduction of the derived critical locus $\operatorname{dCrit}(\tilde{S} : X \to \mathbb{A}^1)$ without gauge quotient. This was worked out independently and in much detail by [Anel/Calaque].
- (3) Our result can be compared to the perturbative BV formalism:

$$\mathcal{O}^{\bullet}(\mathrm{dCrit}(S)) \simeq \mathcal{O}^{\bullet}([Z/G]) \simeq \mathrm{Tot}^{\Pi} \underbrace{\mathsf{N}^{\bullet}(G, \mathcal{O}^{\bullet}(Z))}_{\text{i.g. } \not\simeq \int_{\mathbb{V}^{\mathsf{van Est map}}}^{\mathrm{normalized group cochains}} \mathcal{O}^{\bullet}(\mathrm{BV}(S)) \simeq \mathcal{O}^{\bullet}([Z/\mathfrak{g}]) \simeq \mathrm{Tot}^{\Pi} \underbrace{\mathsf{CE}^{\bullet}(\mathfrak{g}, \mathcal{O}^{\bullet}(Z))}_{\mathbf{C}^{\bullet}(\mathbb{C}^{\mathsf{van Est map}}}$$

Chevalley-Eilenberg cochains

- (1) dCrit(S) carries a canonical (-1)-shifted symplectic structure that can be computed explicitly via intersections of derived Lagrangians.
- (2) $\operatorname{dCrit}(S : [X/G] \to \mathbb{A}^1)$ can be understood as a shifted symplectic reduction of the derived critical locus $\operatorname{dCrit}(\tilde{S} : X \to \mathbb{A}^1)$ without gauge quotient. This was worked out independently and in much detail by [Anel/Calaque].
- (3) Our result can be compared to the perturbative BV formalism:

$$\mathcal{O}^{\bullet}(\mathrm{dCrit}(S)) \simeq \mathcal{O}^{\bullet}([Z/G]) \simeq \mathrm{Tot}^{\Pi} \underbrace{\mathsf{N}^{\bullet}(G, \mathcal{O}^{\bullet}(Z))}_{\text{i.g. } \not\simeq \operatorname{van} \operatorname{Est map}}$$
$$\mathcal{O}^{\bullet}(\mathrm{BV}(S)) \simeq \mathcal{O}^{\bullet}([Z/\mathfrak{g}]) \simeq \mathrm{Tot}^{\Pi} \underbrace{\mathsf{CE}^{\bullet}(\mathfrak{g}, \mathcal{O}^{\bullet}(Z))}_{\text{CE}^{\bullet}(\mathfrak{g}, \mathcal{O}^{\bullet}(Z))}$$

(4) $\operatorname{dCrit}(S) \simeq [Z/G]$ is i.g. **not** affine, i.e. not determined by $\mathcal{O}^{\bullet}(\operatorname{dCrit}(S))$. Need richer algebraic invariant such as SM dg-category of modules

$$\operatorname{\mathbf{QCoh}}(\operatorname{dCrit}(S)) \simeq {}_{\mathcal{O}^{\bullet}(Z)}\operatorname{\mathbf{dgMod}}^{G}$$

Chevalley-Eilenberg cochains

Application 2:

Quantization of derived cotangent stacks

 $\diamond\,$ The following data provides an algebraic and finite-dimensional toy-model for the canonical phase space of a 2^{nd} -order gauge theory such as Yang-Mills:

- $\diamond\,$ The following data provides an algebraic and finite-dimensional toy-model for the canonical phase space of a $2^{\rm nd}$ -order gauge theory such as Yang-Mills:
 - (1) Given a smooth affine scheme $X = \operatorname{Spec} A$ with an action $X \times G \to X$ of a smooth affine group scheme $G = \operatorname{Spec} H$, consider the derived cotangent stack

$$T^*[X/G] \xrightarrow{\text{Satronov}} [T^*X//G] \simeq [\mu^{-1}(0)/G]$$

symplectic reduction

- $\diamond\,$ The following data provides an algebraic and finite-dimensional toy-model for the canonical phase space of a $2^{\rm nd}$ -order gauge theory such as Yang-Mills:
 - (1) Given a smooth affine scheme $X = \operatorname{Spec} A$ with an action $X \times G \to X$ of a smooth affine group scheme $G = \operatorname{Spec} H$, consider the derived cotangent stack

$$T^*[X/G] \xrightarrow{\text{Safronov}} [T^*X//G] \simeq [\mu^{-1}(0)/G]$$

One can work out an explicit model for the derived affine scheme $\mu^{-1}(0)$

$$\mathcal{O}^{\bullet}(\mu^{-1}(0)) = \operatorname{Sym}_{A}(A \otimes \mathfrak{g}[1] \xrightarrow{\mu^{*}} \mathsf{T}_{A})$$

- $\diamond\,$ The following data provides an algebraic and finite-dimensional toy-model for the canonical phase space of a $2^{\rm nd}$ -order gauge theory such as Yang-Mills:
 - (1) Given a smooth affine scheme $X = \operatorname{Spec} A$ with an action $X \times G \to X$ of a smooth affine group scheme $G = \operatorname{Spec} H$, consider the derived cotangent stack

$$T^*[X/G] \xrightarrow{\text{Safronov}} \underbrace{[T^*X//G]}_{\text{symplectic reduction}} \simeq [\mu^{-1}(0)/G]$$

One can work out an explicit model for the derived affine scheme $\mu^{-1}(0)$

$$\mathcal{O}^{\bullet}(\mu^{-1}(0)) = \operatorname{Sym}_{A}(A \otimes \mathfrak{g}[1] \xrightarrow{\mu^{*}} \mathsf{T}_{A})$$

(2) There exists a canonical 0-shifted Poisson structure on $T^*[X/G]$ [Calaque]

- $\diamond\,$ The following data provides an algebraic and finite-dimensional toy-model for the canonical phase space of a 2^{nd} -order gauge theory such as Yang-Mills:
 - (1) Given a smooth affine scheme $X = \operatorname{Spec} A$ with an action $X \times G \to X$ of a smooth affine group scheme $G = \operatorname{Spec} H$, consider the derived cotangent stack

$$T^*[X/G] \xrightarrow{\text{Safronov}} [T^*X//G] \simeq [\mu^{-1}(0)/G]$$

One can work out an explicit model for the derived affine scheme $\mu^{-1}(0)$

$$\mathcal{O}^{\bullet}(\mu^{-1}(0)) = \operatorname{Sym}_{A}(A \otimes \mathfrak{g}[1] \xrightarrow{\mu^{*}} \mathsf{T}_{A})$$

(2) There exists a canonical 0-shifted Poisson structure on $T^*[X/G]$ [Calaque]

♦ **Wanted:** Quantization of $T^*[X/G]$ along this Poisson structure. Find an explicit model for the quantized E_0 -monoidal (= pointed) dg-category

$$\mathbf{QCoh}\big(T^*[X/G]\big)_{\hbar} = ?$$

Strategy

Turn the abstract deformation theoretic arguments of [Pridham] into an explicit construction. Let me sketch the key ideas:

Strategy

Turn the abstract deformation theoretic arguments of [Pridham] into an explicit construction. Let me sketch the key ideas:

(1) Resolve $T^*[X/G] \simeq [\mu^{-1}(0)/G]$ by a diagram of Lie algebra quotients

 $[\mu^{-1}(0)/\mathfrak{g}] \Leftarrow [\mu^{-1}(0) \times G/\mathfrak{g} \oplus \mathfrak{g}] \Leftarrow \cdots$

This turns the global problem into a family of local stacky affine problems.

Strategy

Turn the abstract deformation theoretic arguments of [Pridham] into an explicit construction. Let me sketch the key ideas:

(1) Resolve $T^*[X/G] \simeq [\mu^{-1}(0)/G]$ by a diagram of Lie algebra quotients

 $[\mu^{-1}(0)/\mathfrak{g}] \Leftarrow [\mu^{-1}(0) \times G/\mathfrak{g} \oplus \mathfrak{g}] \Leftarrow \cdots$

(2) Quantize level-wise via differential operators

$$\mathsf{CE}^{\bullet}\big(\mathfrak{g},\mathcal{O}^{\bullet}(\mu^{-1}(0))\big)_{\hbar} \ \rightrightarrows \ \mathsf{CE}^{\bullet}\big(\mathfrak{g}\oplus\mathfrak{g},\mathcal{O}^{\bullet}(\mu^{-1}(0)\times G)\big)_{\hbar} \ \rightrightarrows \ \cdots$$

and pass over to dg-categories of modules

$$\circledast := \Big(_{\mathsf{CE}^{\bullet}(\mathfrak{g}, \mathcal{O}^{\bullet}(\mu^{-1}(0)))_{\hbar}} \mathbf{dgMod} \ \rightrightarrows \ _{\mathsf{CE}^{\bullet}(\mathfrak{g} \oplus \mathfrak{g}, \mathcal{O}^{\bullet}(\mu^{-1}(0) \times G))_{\hbar}} \mathbf{dgMod} \ \rightrightarrows \ \cdots \Big)$$

Strategy

Turn the abstract deformation theoretic arguments of [Pridham] into an explicit construction. Let me sketch the key ideas:

(1) Resolve $T^*[X/G] \simeq [\mu^{-1}(0)/G]$ by a diagram of Lie algebra quotients

 $[\mu^{-1}(0)/\mathfrak{g}] \Leftarrow [\mu^{-1}(0) \times G/\mathfrak{g} \oplus \mathfrak{g}] \Leftarrow \cdots$

(2) Quantize level-wise via differential operators

$$\mathsf{CE}^{\bullet}\big(\mathfrak{g},\mathcal{O}^{\bullet}(\mu^{-1}(0))\big)_{\hbar} \ \rightrightarrows \ \mathsf{CE}^{\bullet}\big(\mathfrak{g}\oplus\mathfrak{g},\mathcal{O}^{\bullet}(\mu^{-1}(0)\times G)\big)_{\hbar} \ \rightrightarrows \ \cdots$$

and pass over to dg-categories of modules

$$\circledast := \left(\ _{\mathsf{CE}^{\bullet}(\mathfrak{g}, \mathcal{O}^{\bullet}(\mu^{-1}(0)))_{\hbar}} \mathbf{dgMod} \ \rightrightarrows \ _{\mathsf{CE}^{\bullet}(\mathfrak{g} \oplus \mathfrak{g}, \mathcal{O}^{\bullet}(\mu^{-1}(0) \times G))_{\hbar}} \mathbf{dgMod} \ \overrightarrow{\rightarrow} \ \cdots \right)$$

(3) Obtain global quantization by computing homotopy limit of dg-categories
 QCoh(T*[X/G])_ħ := holim ⊛ ∈ dgCat

For G reductive, the following dg-category is a model for $\mathbf{QCoh}(T^*[X/G])_{h}$.

For G reductive, the following dg-category is a model for $\mathbf{QCoh}(T^*[X/G])_{h}$.

- \diamond *Objects:* Triples $(\mathcal{E}^{\bullet}, \nabla, \Psi)$ consisting of
 - a G-eqv. $\mathcal{O}(X)[[\hbar]]$ -dg-module \mathcal{E}^{ullet}
 - a *G*-eqv. dg-connection $\nabla : \mathcal{E}^{\bullet} \to \Omega^{1}(X)[[\hbar]] \otimes_{\mathcal{O}(X)[[\hbar]]} \mathcal{E}^{\bullet}$ with respect to $\hbar d^{dR}$, i.e. $\nabla(a s) = \hbar d^{dR} a \otimes s + a \nabla(s)$
 - a G-eqv. graded module map $\Psi:\mathfrak{g}[1]\otimes\mathcal{E}^{\sharp}\to\mathcal{E}^{\sharp}$

For G reductive, the following dg-category is a model for $\mathbf{QCoh}(T^*[X/G])_{\hbar}$.

- \diamond *Objects:* Triples $(\mathcal{E}^{\bullet}, \nabla, \Psi)$ consisting of
 - a G-eqv. $\mathcal{O}(X)[[\hbar]]$ -dg-module \mathcal{E}^{ullet}
 - a *G*-eqv. dg-connection $\nabla : \mathcal{E}^{\bullet} \to \Omega^{1}(X)[[\hbar]] \otimes_{\mathcal{O}(X)[[\hbar]]} \mathcal{E}^{\bullet}$ with respect to $\hbar d^{\mathrm{dR}}$, i.e. $\nabla(a s) = \hbar d^{\mathrm{dR}} a \otimes s + a \nabla(s)$
 - a G-eqv. graded module map $\Psi:\mathfrak{g}[1]\otimes\mathcal{E}^{\sharp}\to\mathcal{E}^{\sharp}$

These data have to satisfy the following conditions

$$\begin{aligned} \nabla_v \, \nabla_{v'} - \nabla_{v'} \, \nabla_v &= \hbar \, \nabla_{[v,v']} \quad , \quad \nabla_v \, \Psi_t - \Psi_t \, \nabla_v &= 0 \\ \Psi_t \, \Psi_{t'} + \Psi_{t'} \, \Psi_t &= 0 \qquad \partial \, \Psi_t + \Psi_t \, \partial &= \nabla_{\mu^*(t)} + \frac{\hbar}{\rho} \rho(t) \end{aligned}$$

For G reductive, the following dg-category is a model for $\mathbf{QCoh}(T^*[X/G])_{h}$.

- \diamond *Objects:* Triples $(\mathcal{E}^{\bullet}, \nabla, \Psi)$ consisting of
 - a G-eqv. $\mathcal{O}(X)[[\hbar]]$ -dg-module \mathcal{E}^{ullet}
 - a *G*-eqv. dg-connection $\nabla : \mathcal{E}^{\bullet} \to \Omega^{1}(X)[[\hbar]] \otimes_{\mathcal{O}(X)[[\hbar]]} \mathcal{E}^{\bullet}$ with respect to $\hbar d^{\mathrm{dR}}$, i.e. $\nabla(as) = \hbar d^{\mathrm{dR}}a \otimes s + a \nabla(s)$
 - a G-eqv. graded module map $\Psi:\mathfrak{g}[1]\otimes\mathcal{E}^{\sharp}\to\mathcal{E}^{\sharp}$

These data have to satisfy the following conditions

$$\begin{aligned} \nabla_v \, \nabla_{v'} - \nabla_{v'} \, \nabla_v &= \hbar \, \nabla_{[v,v']} \quad , \quad \nabla_v \, \Psi_t - \Psi_t \, \nabla_v &= 0 \\ \Psi_t \, \Psi_{t'} + \Psi_{t'} \, \Psi_t &= 0 \qquad \partial \, \Psi_t + \Psi_t \, \partial &= \nabla_{\mu^*(t)} + \frac{\hbar}{h} \rho(t) \end{aligned}$$

 $\diamond \ \underline{\textit{Morphisms:}} \ \underline{\hom}_{\mathcal{O}(X)[[\hbar]]}(\mathcal{E}^{\bullet}, \mathcal{E}'^{\bullet}) \text{ preserving } G, \ \nabla \text{ and } \Psi \text{ strictly}$

For G reductive, the following dg-category is a model for $\mathbf{QCoh}(T^*[X/G])_{\hbar}$.

- ♦ <u>*Objects:*</u> Triples $(\mathcal{E}^{\bullet}, \nabla, \Psi)$ consisting of
 - a G-eqv. $\mathcal{O}(X)[[\hbar]]$ -dg-module \mathcal{E}^{ullet}
 - a *G*-eqv. dg-connection $\nabla : \mathcal{E}^{\bullet} \to \Omega^{1}(X)[[\hbar]] \otimes_{\mathcal{O}(X)[[\hbar]]} \mathcal{E}^{\bullet}$ with respect to $\hbar d^{\mathrm{dR}}$, i.e. $\nabla(a s) = \hbar d^{\mathrm{dR}} a \otimes s + a \nabla(s)$
 - a G-eqv. graded module map $\Psi:\mathfrak{g}[1]\otimes\mathcal{E}^{\sharp}\to\mathcal{E}^{\sharp}$

These data have to satisfy the following conditions

$$egin{aligned}
abla_v \,
abla_{v'} -
abla_{v'} \,
abla_v &= \hbar \,
abla_{[v,v']} \ , \quad
abla_v \, \Psi_t - \Psi_t \,
abla_v &= 0 \ \ \Psi_t \, \Psi_{t'} + \Psi_{t'} \, \Psi_t &= 0 \ \ \partial \, \Psi_t + \Psi_t \, \partial &=
abla_{\mu^*(t)} + \hbar \,
ho(t) \end{aligned}$$

 $\diamond \quad \underline{\textit{Morphisms:}} \quad \underline{\hom}_{\mathcal{O}(X)[[\hbar]]}(\mathcal{E}^{\bullet}, \mathcal{E}'^{\bullet}) \text{ preserving } G, \ \nabla \text{ and } \Psi \text{ strictly}$

Physics note: The dg-modules \mathcal{E}^{\bullet} play the role of "spaces of wave functions". The *G*-action encodes the ghosts. The connection ∇ describes the canonical momentum operators and Ψ defines an action of the anti-ghosts. The \hbar corrections have the same pattern as the canonical commutation relations in the formal (perturbative) setting.

Alexander Schenkel

 DAG is a modern and powerful geometric framework that allows one to deal with "bad" quotients and intersections

- DAG is a modern and powerful geometric framework that allows one to deal with "bad" quotients and intersections
- ◊ In the context of MathPhys, it provides a geometric and non-perturbative refinement of the celebrated BRST/BV/BFV/... formalisms

- DAG is a modern and powerful geometric framework that allows one to deal with "bad" quotients and intersections
- ◊ In the context of MathPhys, it provides a geometric and non-perturbative refinement of the celebrated BRST/BV/BFV/... formalisms
- In this talk I've presented two examples in which the quite abstract (at least for me) constructions in DAG can be worked out fully explicitly:

- DAG is a modern and powerful geometric framework that allows one to deal with "bad" quotients and intersections
- ◊ In the context of MathPhys, it provides a geometric and non-perturbative refinement of the celebrated BRST/BV/BFV/... formalisms
- ◊ In this talk I've presented two examples in which the quite abstract (at least for me) constructions in DAG can be worked out fully explicitly:
 - (1) derived critical locus of a function $S: [X/G] \to \mathbb{A}^1$ on a quotient stack

- DAG is a modern and powerful geometric framework that allows one to deal with "bad" quotients and intersections
- ◊ In the context of MathPhys, it provides a geometric and non-perturbative refinement of the celebrated BRST/BV/BFV/... formalisms
- In this talk I've presented two examples in which the quite abstract (at least for me) constructions in DAG can be worked out fully explicitly:
 - (1) derived critical locus of a function $S: [X/G] \to \mathbb{A}^1$ on a quotient stack
 - (2) quantization of a derived cotangent stack $T^*[X/G]$ along the canonical 0-shifted Poisson structure

- DAG is a modern and powerful geometric framework that allows one to deal with "bad" quotients and intersections
- ◊ In the context of MathPhys, it provides a geometric and non-perturbative refinement of the celebrated BRST/BV/BFV/... formalisms
- ◊ In this talk I've presented two examples in which the quite abstract (at least for me) constructions in DAG can be worked out fully explicitly:
 - (1) derived critical locus of a function $S:[X/G] \to \mathbb{A}^1$ on a quotient stack
 - (2) quantization of a derived cotangent stack $T^*[X/G]$ along the canonical 0-shifted Poisson structure
- I would like to do some future work in the following directions:
 - 1. "Extrapolate" our results to field theoretic examples (needs functional analysis (***)) and study simple examples of non-perturbative quantum gauge theories.

- DAG is a modern and powerful geometric framework that allows one to deal with "bad" quotients and intersections
- ◊ In the context of MathPhys, it provides a geometric and non-perturbative refinement of the celebrated BRST/BV/BFV/... formalisms
- ◊ In this talk I've presented two examples in which the quite abstract (at least for me) constructions in DAG can be worked out fully explicitly:
 - (1) derived critical locus of a function $S:[X/G] \to \mathbb{A}^1$ on a quotient stack
 - (2) quantization of a derived cotangent stack $T^{\ast}[X/G]$ along the canonical 0-shifted Poisson structure
- ◊ I would like to do some future work in the following directions:
 - 1. "Extrapolate" our results to field theoretic examples (needs functional analysis (a) and study simple examples of non-perturbative quantum gauge theories.
 - Study and work out further examples of deformation quantizations of unshifted and also shifted Poisson structures on derived stacks.
 Interesting candidate: [pt/G] for a higher group → higher quantum groups? [work in progress with Laugwitz].