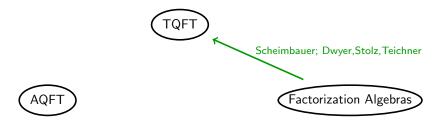
Factorization Algebras vs Algebraic QFT

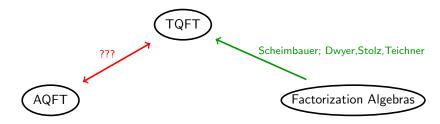
Alexander Schenkel

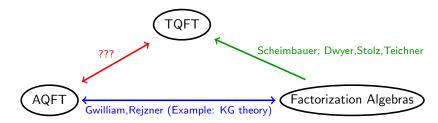
School of Mathematical Sciences, University of Nottingham

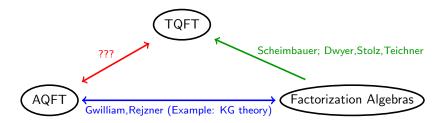
North British Mathematical Physics Seminar 56, 4 June 2019, York.

Joint work with M. Benini and M. Perin [arXiv:1903.03396].







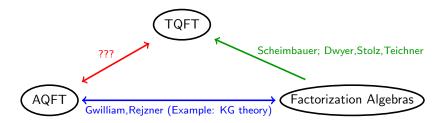


Theorem (Benini, Perin, AS)

There exists an equivalence

$$\mathbf{tPFA}^{\mathrm{add},\mathrm{c}} \xrightarrow{} \mathbf{AQFT}^{\mathrm{add},\mathrm{c}}$$

between the category of Cauchy constant additive time-orderable prefactorization algebras on Loc and the category of Cauchy constant additive AQFTs on Loc.



Theorem (Benini, Perin, AS)

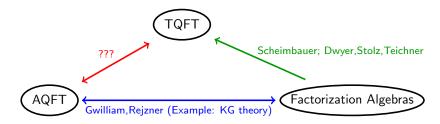
There exists an equivalence

$$\mathbf{tPFA}^{\mathrm{add},\mathrm{c}} \xrightarrow{} \mathbf{AQFT}^{\mathrm{add},\mathrm{c}}$$

between the category of Cauchy constant additive time-orderable prefactorization algebras on Loc and the category of Cauchy constant additive AQFTs on Loc.

• Goals of this talk:

 $1. \$ Introduce necessary concepts to understand formulation of theorem



Theorem (Benini, Perin, AS)

There exists an equivalence

$$\mathbf{tPFA}^{\mathrm{add},\mathrm{c}} \xrightarrow{} \mathbf{AQFT}^{\mathrm{add},\mathrm{c}}$$

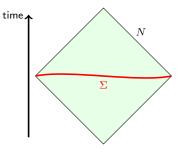
between the category of Cauchy constant additive time-orderable prefactorization algebras on Loc and the category of Cauchy constant additive AQFTs on Loc.

• Goals of this talk:

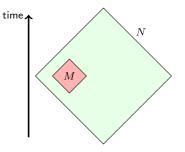
- 1. Introduce necessary concepts to understand formulation of theorem
- 2. Sketch the key ingredients for its proof

Δ	ديما	nder	· Scl	hon	اما

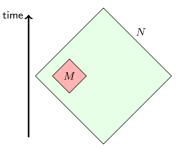
◊ Spacetime := oriented and time-oriented globally hyperbolic Lorentzian manifold N



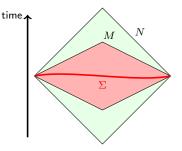
- ◊ Spacetime := oriented and time-oriented globally hyperbolic Lorentzian manifold N
- ♦ Spacetime embedding := orientation and time-orientation preserving isometric embedding $f: M \to N$ s.t. $f(M) \subseteq N$ is open and causally convex



- ◊ Spacetime := oriented and time-oriented globally hyperbolic Lorentzian manifold N
- ◇ **Spacetime embedding** := orientation and time-orientation preserving isometric embedding $f : M \to N$ s.t. $f(M) \subseteq N$ is open and causally convex
- **Def:** Denote by Loc the category of spacetimes and spacetime embeddings.

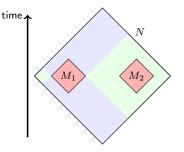


- ◊ Spacetime := oriented and time-oriented globally hyperbolic Lorentzian manifold N
- ♦ Spacetime embedding := orientation and time-orientation preserving isometric embedding $f: M \to N$ s.t. $f(M) \subseteq N$ is open and causally convex
- **Def:** Denote by Loc the category of spacetimes and spacetime embeddings.



- ◊ The following (tuples of) Loc-morphisms will be important:
 - (i) Cauchy morphism: $f: M \to N$ s.t. $f(M) \subseteq N$ contains Cauchy surface of N

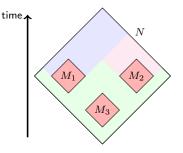
- ◊ Spacetime := oriented and time-oriented globally hyperbolic Lorentzian manifold N
- ♦ Spacetime embedding := orientation and time-orientation preserving isometric embedding $f: M \to N$ s.t. $f(M) \subseteq N$ is open and causally convex
- **Def:** Denote by Loc the category of spacetimes and spacetime embeddings.



- $\diamond\,$ The following (tuples of) Loc-morphisms will be important:
 - (i) Cauchy morphism: $f: M \to N$ s.t. $f(M) \subseteq N$ contains Cauchy surface of N

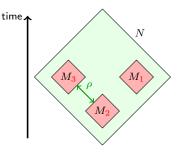
(ii) Causally disjoint pair: $(f_1: M_1 \to N, f_2: M_2 \to N)$ s.t. $J_N(f_1(M_1)) \cap f_2(M_2) = \emptyset$

- ◊ Spacetime := oriented and time-oriented globally hyperbolic Lorentzian manifold N
- ♦ Spacetime embedding := orientation and time-orientation preserving isometric embedding $f: M \to N$ s.t. $f(M) \subseteq N$ is open and causally convex
- **Def:** Denote by Loc the category of spacetimes and spacetime embeddings.



- $\diamond\,$ The following (tuples of) Loc-morphisms will be important:
 - (i) Cauchy morphism: $f: M \to N$ s.t. $f(M) \subseteq N$ contains Cauchy surface of N
 - (ii) Causally disjoint pair: $(f_1: M_1 \to N, f_2: M_2 \to N)$ s.t. $J_N(f_1(M_1)) \cap f_2(M_2) = \emptyset$
 - (iii) Time-ordered tuple: $\underline{f} = (f_1, \dots, f_n) : \underline{M} = (M_1, \dots, M_n) \to N$ s.t. $J_N^+(f_i(M_i)) \cap f_j(M_j) = \emptyset$, for all i < j

- ◊ Spacetime := oriented and time-oriented globally hyperbolic Lorentzian manifold N
- ♦ Spacetime embedding := orientation and time-orientation preserving isometric embedding $f: M \to N$ s.t. $f(M) \subseteq N$ is open and causally convex
- **Def:** Denote by Loc the category of spacetimes and spacetime embeddings.



- $\diamond\,$ The following (tuples of) Loc-morphisms will be important:
 - (i) Cauchy morphism: $f: M \to N$ s.t. $f(M) \subseteq N$ contains Cauchy surface of N
 - (ii) Causally disjoint pair: $(f_1: M_1 \to N, f_2: M_2 \to N)$ s.t. $J_N(f_1(M_1)) \cap f_2(M_2) = \emptyset$
 - (iii) Time-ordered tuple: $\underline{f} = (f_1, \dots, f_n) : \underline{M} = (M_1, \dots, M_n) \to N$ s.t. $J_N^+(f_i(M_i)) \cap f_j(M_j) = \emptyset$, for all i < j
 - (iv) Time-orderable tuple: $\underline{f}: \underline{M} \to N$ s.t. there exists $\rho \in \Sigma_n$ (time-ordering permutation) with $\underline{f}\rho = (f_{\rho(1)}, \dots, f_{\rho(n)}) : \underline{M}\rho \to N$ time-ordered

 $\diamond~$ A tPFA \mathfrak{F} on \mathbf{Loc} is given by the following data:

(1) for each spacetime $M \in \mathbf{Loc}$, a vector space $\mathfrak{F}(M) \in \mathbf{Vec}$ (of observables)

 $\diamond\,$ A tPFA \mathfrak{F} on \mathbf{Loc} is given by the following data:

- (1) for each spacetime $M \in \mathbf{Loc}$, a vector space $\mathfrak{F}(M) \in \mathbf{Vec}$ (of observables)
- (2) for each time-orderable $\underline{f}: \underline{M} \to N$, a linear map $\mathfrak{F}(\underline{f}): \bigotimes_{i=1}^{n} \mathfrak{F}(M_i) \to \mathfrak{F}(N)$ (factorization product), with $\mathfrak{F}(\emptyset \to N): \mathbb{K} \to \mathfrak{F}(N)$ for empty tuples,

 $\diamond\,$ A tPFA \mathfrak{F} on \mathbf{Loc} is given by the following data:

- (1) for each spacetime $M \in \mathbf{Loc}$, a vector space $\mathfrak{F}(M) \in \mathbf{Vec}$ (of observables)
- (2) for each time-orderable $\underline{f}: \underline{M} \to N$, a linear map $\mathfrak{F}(\underline{f}): \bigotimes_{i=1}^{n} \mathfrak{F}(M_i) \to \mathfrak{F}(N)$ (factorization product), with $\mathfrak{F}(\emptyset \to N): \mathbb{K} \to \mathfrak{F}(N)$ for empty tuples,

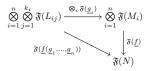
such that the following axioms hold true:

 $\diamond\,$ A tPFA \mathfrak{F} on \mathbf{Loc} is given by the following data:

- (1) for each spacetime $M \in \mathbf{Loc}$, a vector space $\mathfrak{F}(M) \in \mathbf{Vec}$ (of observables)
- (2) for each time-orderable $\underline{f}: \underline{M} \to N$, a linear map $\mathfrak{F}(\underline{f}): \bigotimes_{i=1}^{n} \mathfrak{F}(M_i) \to \mathfrak{F}(N)$ (factorization product), with $\mathfrak{F}(\emptyset \to N): \mathbb{K} \to \mathfrak{F}(N)$ for empty tuples,

such that the following axioms hold true:

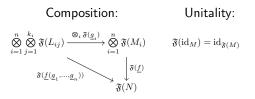
Composition:



 $\diamond\,$ A tPFA \mathfrak{F} on \mathbf{Loc} is given by the following data:

- (1) for each spacetime $M \in \mathbf{Loc}$, a vector space $\mathfrak{F}(M) \in \mathbf{Vec}$ (of observables)
- (2) for each time-orderable $\underline{f}: \underline{M} \to N$, a linear map $\mathfrak{F}(\underline{f}): \bigotimes_{i=1}^{n} \mathfrak{F}(M_i) \to \mathfrak{F}(N)$ (factorization product), with $\mathfrak{F}(\emptyset \to N): \mathbb{K} \to \mathfrak{F}(N)$ for empty tuples,

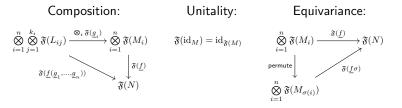
such that the following axioms hold true:



 $\diamond\,$ A tPFA \mathfrak{F} on \mathbf{Loc} is given by the following data:

- (1) for each spacetime $M \in \mathbf{Loc}$, a vector space $\mathfrak{F}(M) \in \mathbf{Vec}$ (of observables)
- (2) for each time-orderable $\underline{f}: \underline{M} \to N$, a linear map $\mathfrak{F}(\underline{f}): \bigotimes_{i=1}^{n} \mathfrak{F}(M_i) \to \mathfrak{F}(N)$ (factorization product), with $\mathfrak{F}(\emptyset \to N): \mathbb{K} \to \mathfrak{F}(N)$ for empty tuples,

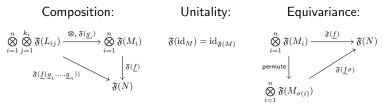
such that the following axioms hold true:



 $\diamond\,$ A tPFA \mathfrak{F} on \mathbf{Loc} is given by the following data:

- (1) for each spacetime $M \in \mathbf{Loc}$, a vector space $\mathfrak{F}(M) \in \mathbf{Vec}$ (of observables)
- (2) for each time-orderable $\underline{f}: \underline{M} \to N$, a linear map $\mathfrak{F}(\underline{f}): \bigotimes_{i=1}^{n} \mathfrak{F}(M_i) \to \mathfrak{F}(N)$ (factorization product), with $\mathfrak{F}(\emptyset \to N): \mathbb{K} \to \mathfrak{F}(N)$ for empty tuples,

such that the following axioms hold true:

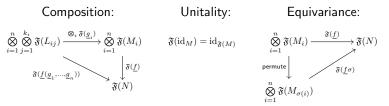


Def: Denote by **tPFA** the category of tPFAs on **Loc** with morphisms given by natural transformations (of multifunctors).

 $\diamond\,$ A tPFA \mathfrak{F} on \mathbf{Loc} is given by the following data:

- (1) for each spacetime $M \in \mathbf{Loc}$, a vector space $\mathfrak{F}(M) \in \mathbf{Vec}$ (of observables)
- (2) for each time-orderable $\underline{f}: \underline{M} \to N$, a linear map $\mathfrak{F}(\underline{f}): \bigotimes_{i=1}^{n} \mathfrak{F}(M_i) \to \mathfrak{F}(N)$ (factorization product), with $\mathfrak{F}(\emptyset \to N): \mathbb{K} \to \mathfrak{F}(N)$ for empty tuples,

such that the following axioms hold true:



Def: Denote by **tPFA** the category of tPFAs on **Loc** with morphisms given by natural transformations (of multifunctors).

Concretely, a morphism $\zeta: \mathfrak{F} \to \mathfrak{G}$ is a family of linear maps $\zeta_M: \mathfrak{F}(M) \to \mathfrak{G}(M)$, for all $M \in \mathbf{Loc}$, that is compatible with the factorization products in the sense that $\zeta_N \circ \mathfrak{F}(\underline{f}) = \mathfrak{F}(\underline{f}) \circ \bigotimes_i \zeta_{M_i}$, for all $\underline{f}: \underline{M} \to N$.

Def: $\mathfrak{F} \in \mathbf{tPFA}$ is called Cauchy constant if $\mathfrak{F}(f) : \mathfrak{F}(M) \xrightarrow{\cong} \mathfrak{F}(N)$ is isomorphism for all Cauchy morphisms $f : M \to N$.

Def: $\mathfrak{F} \in \mathbf{tPFA}$ is called Cauchy constant if $\mathfrak{F}(f) : \mathfrak{F}(M) \xrightarrow{\cong} \mathfrak{F}(N)$ is isomorphism for all Cauchy morphisms $f : M \to N$. Denote by $\mathbf{tPFA}^c \subseteq \mathbf{tPFA}$ the full subcategory of Cauchy constant tPFAs.

- **Def:** $\mathfrak{F} \in \mathbf{tPFA}$ is called Cauchy constant if $\mathfrak{F}(f) : \mathfrak{F}(M) \xrightarrow{\cong} \mathfrak{F}(N)$ is isomorphism for all Cauchy morphisms $f : M \to N$. Denote by $\mathbf{tPFA}^c \subseteq \mathbf{tPFA}$ the full subcategory of Cauchy constant tPFAs.
- Rem: Cauchy constancy (aka time-slice) encodes a concept of time evolution.

- **Def:** $\mathfrak{F} \in \mathbf{tPFA}$ is called Cauchy constant if $\mathfrak{F}(f) : \mathfrak{F}(M) \xrightarrow{\cong} \mathfrak{F}(N)$ is isomorphism for all Cauchy morphisms $f : M \to N$. Denote by $\mathbf{tPFA}^c \subseteq \mathbf{tPFA}$ the full subcategory of Cauchy constant tPFAs.
- Rem: Cauchy constancy (aka time-slice) encodes a concept of time evolution.
- **Def:** For $M \in \mathbf{Loc}$, let \mathbf{RC}_M denote the category of *relatively compact* and causally convex open subsets $U \subseteq M$.

- **Def:** $\mathfrak{F} \in \mathbf{tPFA}$ is called Cauchy constant if $\mathfrak{F}(f) : \mathfrak{F}(M) \xrightarrow{\cong} \mathfrak{F}(N)$ is isomorphism for all Cauchy morphisms $f : M \to N$. Denote by $\mathbf{tPFA}^c \subseteq \mathbf{tPFA}$ the full subcategory of Cauchy constant tPFAs.
- Rem: Cauchy constancy (aka time-slice) encodes a concept of time evolution.
- **Def:** For $M \in \mathbf{Loc}$, let \mathbf{RC}_M denote the category of *relatively compact* and causally convex open subsets $U \subseteq M$.

 $\mathfrak{F} \in \mathbf{tPFA}$ is called additive if

$$\operatorname{colim}\left(\mathfrak{F}|_{M}:\mathbf{RC}_{M}\to\mathbf{Vec}\right) \xrightarrow{\cong} \mathfrak{F}(M)$$

is isomorphism, for all $M \in \mathbf{Loc}$.

- **Def:** $\mathfrak{F} \in \mathbf{tPFA}$ is called Cauchy constant if $\mathfrak{F}(f) : \mathfrak{F}(M) \xrightarrow{\cong} \mathfrak{F}(N)$ is isomorphism for all Cauchy morphisms $f : M \to N$. Denote by $\mathbf{tPFA}^c \subseteq \mathbf{tPFA}$ the full subcategory of Cauchy constant tPFAs.
- Rem: Cauchy constancy (aka time-slice) encodes a concept of time evolution.
- **Def:** For $M \in \mathbf{Loc}$, let \mathbf{RC}_M denote the category of *relatively compact* and causally convex open subsets $U \subseteq M$.

 $\mathfrak{F} \in \mathbf{tPFA}$ is called additive if

$$\operatorname{colim}\left(\mathfrak{F}|_{M}:\mathbf{RC}_{M}\to\mathbf{Vec}\right) \xrightarrow{\cong} \mathfrak{F}(M)$$

is isomorphism, for all $M \in \mathbf{Loc}$.

Denote by $\mathbf{tPFA}^{\mathrm{add}} \subseteq \mathbf{tPFA}$ the full subcategory of additive tPFAs and by $\mathbf{tPFA}^{\mathrm{add,c}} \subseteq \mathbf{tPFA}$ the full subcategory of Cauchy constant additive tPFAs.

- **Def:** $\mathfrak{F} \in \mathbf{tPFA}$ is called Cauchy constant if $\mathfrak{F}(f) : \mathfrak{F}(M) \xrightarrow{\cong} \mathfrak{F}(N)$ is isomorphism for all Cauchy morphisms $f : M \to N$. Denote by $\mathbf{tPFA}^c \subseteq \mathbf{tPFA}$ the full subcategory of Cauchy constant tPFAs.
- Rem: Cauchy constancy (aka time-slice) encodes a concept of time evolution.
- **Def:** For $M \in \mathbf{Loc}$, let \mathbf{RC}_M denote the category of *relatively compact* and causally convex open subsets $U \subseteq M$.

 $\mathfrak{F} \in \mathbf{tPFA}$ is called additive if

$$\operatorname{colim}\left(\mathfrak{F}|_{M}:\mathbf{RC}_{M}\to\mathbf{Vec}\right) \xrightarrow{\cong} \mathfrak{F}(M)$$

is isomorphism, for all $M \in \mathbf{Loc}$.

Denote by $\mathbf{tPFA}^{\mathrm{add}} \subseteq \mathbf{tPFA}$ the full subcategory of additive tPFAs and by $\mathbf{tPFA}^{\mathrm{add,c}} \subseteq \mathbf{tPFA}$ the full subcategory of Cauchy constant additive tPFAs.

Rem: Additivity encodes a concept of compact support for observables.

- **Def:** $\mathfrak{F} \in \mathbf{tPFA}$ is called Cauchy constant if $\mathfrak{F}(f) : \mathfrak{F}(M) \xrightarrow{\cong} \mathfrak{F}(N)$ is isomorphism for all Cauchy morphisms $f : M \to N$. Denote by $\mathbf{tPFA}^c \subseteq \mathbf{tPFA}$ the full subcategory of Cauchy constant tPFAs.
- Rem: Cauchy constancy (aka time-slice) encodes a concept of time evolution.
- **Def:** For $M \in \mathbf{Loc}$, let \mathbf{RC}_M denote the category of *relatively compact* and causally convex open subsets $U \subseteq M$.

 $\mathfrak{F} \in \mathbf{tPFA}$ is called additive if

$$\operatorname{colim}\left(\mathfrak{F}|_{M}: \mathbf{RC}_{M} \to \mathbf{Vec}\right) \xrightarrow{\cong} \mathfrak{F}(M)$$

is isomorphism, for all $M \in \mathbf{Loc}$.

Denote by $\mathbf{tPFA}^{\mathrm{add}} \subseteq \mathbf{tPFA}$ the full subcategory of additive tPFAs and by $\mathbf{tPFA}^{\mathrm{add,c}} \subseteq \mathbf{tPFA}$ the full subcategory of Cauchy constant additive tPFAs.

- Rem: Additivity encodes a concept of compact support for observables.
- **Prop:** Every factorization algebra \mathfrak{F} on Loc (i.e. a tPFA satisfying Weiss descent) is an additive tPFA.

♦ An AQFT on Loc is a functor \mathfrak{A} : Loc \rightarrow Alg := Alg_{As}(Vec) satisfying the Einstein causality axiom: For causally disjoint $(f_1 : M_1 \rightarrow N, f_2 : M_2 \rightarrow N)$,

♦ An AQFT on Loc is a functor \mathfrak{A} : Loc → Alg := Alg_{As}(Vec) satisfying the Einstein causality axiom: For causally disjoint $(f_1 : M_1 \rightarrow N, f_2 : M_2 \rightarrow N)$,

Slogan: Any two spacelike separated observables commute with each other.

♦ An AQFT on Loc is a functor \mathfrak{A} : Loc → Alg := Alg_{As}(Vec) satisfying the Einstein causality axiom: For causally disjoint $(f_1 : M_1 \rightarrow N, f_2 : M_2 \rightarrow N)$,

Slogan: Any two spacelike separated observables commute with each other.

Def: Denote by **AQFT** the category of AQFTs on **Loc** with morphisms given by natural transformations.

♦ An AQFT on Loc is a functor \mathfrak{A} : Loc → Alg := Alg_{As}(Vec) satisfying the Einstein causality axiom: For causally disjoint $(f_1 : M_1 \rightarrow N, f_2 : M_2 \rightarrow N)$,

Slogan: Any two spacelike separated observables commute with each other.

- **Def:** Denote by **AQFT** the category of AQFTs on **Loc** with morphisms given by natural transformations.
- Rem: Cauchy constancy and additivity can be defined for AQFTs as well.

♦ An AQFT on Loc is a functor \mathfrak{A} : Loc → Alg := Alg_{As}(Vec) satisfying the Einstein causality axiom: For causally disjoint $(f_1 : M_1 \rightarrow N, f_2 : M_2 \rightarrow N)$,

Slogan: Any two spacelike separated observables commute with each other.

- **Def:** Denote by **AQFT** the category of AQFTs on **Loc** with morphisms given by natural transformations.
- **Rem:** Cauchy constancy and additivity can be defined for AQFTs as well. Denote the corresponding full subcategories by **AQFT**^c, **AQFT**^{add} and **AQFT**^{add,c} for Cauchy constant additive AQFTs.

Algebraic quantum field theories on ${\bf Loc}$

♦ An AQFT on Loc is a functor \mathfrak{A} : Loc → Alg := Alg_{As}(Vec) satisfying the Einstein causality axiom: For causally disjoint $(f_1 : M_1 \rightarrow N, f_2 : M_2 \rightarrow N)$,

Slogan: Any two spacelike separated observables commute with each other.

Def: Denote by **AQFT** the category of AQFTs on **Loc** with morphisms given by natural transformations.

Rem: Cauchy constancy and additivity can be defined for AQFTs as well. Denote the corresponding full subcategories by **AQFT**^c, **AQFT**^{add} and **AQFT**^{add,c} for Cauchy constant additive AQFTs.

... and this now sets the stage for our Comparison Theorem.

 \diamond Let $\mathfrak{A} \in \mathbf{AQFT}$ (Cauchy constancy and additivity *not* needed here!)

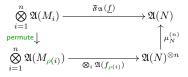
- \diamond Let $\mathfrak{A} \in \mathbf{AQFT}$ (Cauchy constancy and additivity *not* needed here!)
- ♦ For time-orderable $\underline{f} : \underline{M} \to N$ with time-ordering permutation $\rho \in \Sigma_n$, define time-ordered product $\mathfrak{F}_{\mathfrak{A}}(\underline{f}) : \bigotimes_{i=1}^n \mathfrak{A}(M_i) \to \mathfrak{A}(N)$ by

- $\diamond~$ Let $\mathfrak{A} \in \mathbf{AQFT}$ (Cauchy constancy and additivity *not* needed here!)
- ♦ For time-orderable $\underline{f} : \underline{M} \to N$ with time-ordering permutation $\rho \in \Sigma_n$, define time-ordered product $\mathfrak{F}_{\mathfrak{A}}(\underline{f}) : \bigotimes_{i=1}^n \mathfrak{A}(M_i) \to \mathfrak{A}(N)$ by

$$\begin{array}{c} \bigotimes_{i=1}^{n} \mathfrak{A}(M_{i}) & \xrightarrow{\mathfrak{F}_{\mathfrak{A}}(\underline{f})} & \mathfrak{A}(N) \\ & & & & \\ \mathsf{permute} \downarrow & & \uparrow^{\mu_{N}^{(n)}} \\ & & & & \\ \bigotimes_{i=1}^{n} \mathfrak{A}(M_{\rho(i)}) & \xrightarrow{} & & \\ & & & \otimes_{i} \mathfrak{A}(f_{\rho(i)}) & \\ \end{array}$$

Prop: $\mathfrak{F}_{\mathfrak{A}} \in \mathbf{tPFA}$, for every $\mathfrak{A} \in \mathbf{AQFT}$.

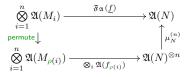
- $\diamond~$ Let $\mathfrak{A} \in \mathbf{AQFT}$ (Cauchy constancy and additivity *not* needed here!)
- ♦ For time-orderable $\underline{f} : \underline{M} \to N$ with time-ordering permutation $\rho \in \Sigma_n$, define time-ordered product $\mathfrak{F}_{\mathfrak{A}}(\underline{f}) : \bigotimes_{i=1}^n \mathfrak{A}(M_i) \to \mathfrak{A}(N)$ by



Prop: $\mathfrak{F}_{\mathfrak{A}} \in \mathbf{tPFA}$, for every $\mathfrak{A} \in \mathbf{AQFT}$.

This construction is functorial $\mathfrak{F}_{(-)}: \mathbf{AQFT} \to \mathbf{tPFA}$ and it restricts to Cauchy constant additive theories $\mathfrak{F}_{(-)}: \mathbf{AQFT}^{\mathrm{add},\mathrm{c}} \to \mathbf{tPFA}^{\mathrm{add},\mathrm{c}}$.

- \diamond Let $\mathfrak{A} \in \mathbf{AQFT}$ (Cauchy constancy and additivity *not* needed here!)
- ♦ For time-orderable $\underline{f} : \underline{M} \to N$ with time-ordering permutation $\rho \in \Sigma_n$, define time-ordered product $\mathfrak{F}_{\mathfrak{A}}(\underline{f}) : \bigotimes_{i=1}^n \mathfrak{A}(M_i) \to \mathfrak{A}(N)$ by

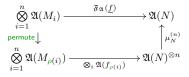


Prop: $\mathfrak{F}_{\mathfrak{A}} \in \mathbf{tPFA}$, for every $\mathfrak{A} \in \mathbf{AQFT}$.

This construction is functorial $\mathfrak{F}_{(-)} : \mathbf{AQFT} \to \mathbf{tPFA}$ and it restricts to Cauchy constant additive theories $\mathfrak{F}_{(-)} : \mathbf{AQFT}^{\mathrm{add,c}} \to \mathbf{tPFA}^{\mathrm{add,c}}$.

Rem: The functor $\mathfrak{F}_{(-)} : \mathbf{AQFT} \to \mathbf{tPFA}$ arises as pullback of a colored operad morphism $\Phi : \mathcal{P}_{\mathbf{Loc}} \to \mathcal{O}_{\mathbf{Loc}}$ from the AQFT operad to the tPFA operad.

- $\diamond~$ Let $\mathfrak{A} \in \mathbf{AQFT}$ (Cauchy constancy and additivity *not* needed here!)
- ♦ For time-orderable $\underline{f} : \underline{M} \to N$ with time-ordering permutation $\rho \in \Sigma_n$, define time-ordered product $\mathfrak{F}_{\mathfrak{A}}(\underline{f}) : \bigotimes_{i=1}^n \mathfrak{A}(M_i) \to \mathfrak{A}(N)$ by



Rem: The functor $\mathfrak{F}_{(-)} : \mathbf{AQFT} \to \mathbf{tPFA}$ arises as pullback of a colored operad morphism $\Phi : \mathcal{P}_{\mathbf{Loc}} \to \mathcal{O}_{\mathbf{Loc}}$ from the AQFT operad to the tPFA operad. By abstract non-sense (operadic left Kan extension), there exists adjunction

$$\Phi_{!} : \mathbf{tPFA} \iff \mathbf{AQFT} : \Phi^{*} = \mathfrak{F}_{(-)}$$

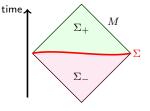
which however is not an adjoint equivalence.

Alexander Schenkel

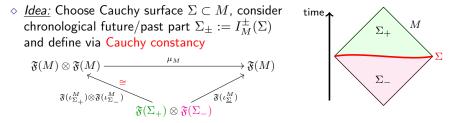
 $\diamond~$ Let $\mathfrak{F} \in \mathbf{tPFA}^{\mathrm{add},\mathrm{c}}$ (Cauchy constancy and additivity are now crucial!)

- $\diamond~{\sf Let}~\mathfrak{F}\in {\bf tPFA}^{\rm add,c}$ (Cauchy constancy and additivity are now crucial!)
- ♦ <u>Wanted</u>: Multiplication maps $\mu_M : \mathfrak{F}(M) \otimes \mathfrak{F}(M) \to \mathfrak{F}(M)$, for each $M \in \mathbf{Loc}$, that endow \mathfrak{F} with the structure of an AQFT.

- $\diamond~$ Let $\mathfrak{F} \in \mathbf{tPFA}^{\mathrm{add},\mathrm{c}}$ (Cauchy constancy and additivity are now crucial!)
- ♦ <u>Wanted</u>: Multiplication maps $\mu_M : \mathfrak{F}(M) \otimes \mathfrak{F}(M) \to \mathfrak{F}(M)$, for each $M \in \mathbf{Loc}$, that endow \mathfrak{F} with the structure of an AQFT.
- ♦ <u>Idea</u>: Choose Cauchy surface $\Sigma \subset M$, consider the chronological future/past part $\Sigma_{\pm} := I_M^{\pm}(\Sigma)$ and define via Cauchy constancy



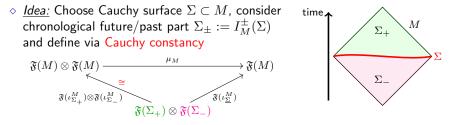
- $\diamond~$ Let $\mathfrak{F} \in \mathbf{tPFA}^{\mathrm{add},\mathrm{c}}$ (Cauchy constancy and additivity are now crucial!)
- ♦ <u>Wanted</u>: Multiplication maps $\mu_M : \mathfrak{F}(M) \otimes \mathfrak{F}(M) \to \mathfrak{F}(M)$, for each $M \in \mathbf{Loc}$, that endow \mathfrak{F} with the structure of an AQFT.



Important questions:

1. Is μ_M independent of the choice of Cauchy surface $\Sigma \subset M$?

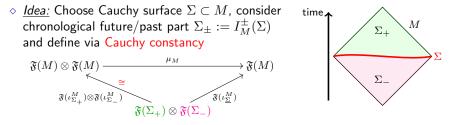
- $\diamond~ {\sf Let}~ \mathfrak{F} \in {f tPFA}^{
 m add,c}$ (Cauchy constancy and additivity are now crucial!)
- ♦ <u>Wanted</u>: Multiplication maps $\mu_M : \mathfrak{F}(M) \otimes \mathfrak{F}(M) \to \mathfrak{F}(M)$, for each $M \in \mathbf{Loc}$, that endow \mathfrak{F} with the structure of an AQFT.



Important questions:

- 1. Is μ_M independent of the choice of Cauchy surface $\Sigma \subset M$?
- 2. Is the family of μ_M natural w.r.t. $\mathfrak{F}(f) : \mathfrak{F}(M) \to \mathfrak{F}(N)$?

- $\diamond~$ Let $\mathfrak{F} \in \mathbf{tPFA}^{\mathrm{add},\mathrm{c}}$ (Cauchy constancy and additivity are now crucial!)
- ♦ <u>Wanted</u>: Multiplication maps $\mu_M : \mathfrak{F}(M) \otimes \mathfrak{F}(M) \to \mathfrak{F}(M)$, for each $M \in \mathbf{Loc}$, that endow \mathfrak{F} with the structure of an AQFT.



Important questions:

- 1. Is μ_M independent of the choice of Cauchy surface $\Sigma \subset M$?
- 2. Is the family of μ_M natural w.r.t. $\mathfrak{F}(f) : \mathfrak{F}(M) \to \mathfrak{F}(N)$?
- 3. Do the μ_M fulfill the Einstein causality axiom of AQFT?

- **Def:** For $M \in Loc$, denote by \mathbf{P}_M the category of all pairs $U_{\pm} \subseteq M$ of causally convex open subsets fulfilling the requirements:
 - (i) there exists a Cauchy surface $\Sigma \subset M$ s.t. $U_{\pm} \subseteq I_M^{\pm}(\Sigma)$,
 - (ii) the inclusions $\iota_{U_{\pm}}^{M}: U_{\pm} \to M$ are Cauchy morphisms.

- **Def:** For $M \in Loc$, denote by \mathbf{P}_M the category of all pairs $U_{\pm} \subseteq M$ of causally convex open subsets fulfilling the requirements:
 - (i) there exists a Cauchy surface $\Sigma \subset M$ s.t. $U_{\pm} \subseteq I_M^{\pm}(\Sigma)$,
 - (ii) the inclusions $\iota_{U_{\pm}}^{M}: U_{\pm} \to M$ are Cauchy morphisms.

(Morphisms $U_{\pm} \to V_{\pm}$ are given by subset inclusions $U_{\pm} \subseteq V_{\pm}$.)

- **Def:** For $M \in \mathbf{Loc}$, denote by \mathbf{P}_M the category of all pairs $U_{\pm} \subseteq M$ of causally convex open subsets fulfilling the requirements:
 - (i) there exists a Cauchy surface $\Sigma \subset M$ s.t. $U_{\pm} \subseteq I_M^{\pm}(\Sigma)$,
 - (ii) the inclusions $\iota_{U_{\pm}}^{M}: U_{\pm} \to M$ are Cauchy morphisms.

(Morphisms $U_{\pm} \to V_{\pm}$ are given by subset inclusions $U_{\pm} \subseteq V_{\pm}$.)

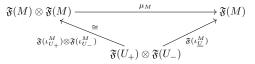
Prop: For every $M \in Loc$, the category \mathbf{P}_M is non-empty and connected.

- **Def:** For $M \in Loc$, denote by \mathbf{P}_M the category of all pairs $U_{\pm} \subseteq M$ of causally convex open subsets fulfilling the requirements:
 - (i) there exists a Cauchy surface $\Sigma \subset M$ s.t. $U_{\pm} \subseteq I_M^{\pm}(\Sigma)$,
 - (ii) the inclusions $\iota_{U_{\pm}}^{M}: U_{\pm} \to M$ are Cauchy morphisms.

(Morphisms $U_{\pm} \to V_{\pm}$ are given by subset inclusions $U_{\pm} \subseteq V_{\pm}$.)

Prop: For every $M \in \mathbf{Loc}$, the category \mathbf{P}_M is non-empty and connected.

As a consequence, for every $\mathfrak{F} \in \mathbf{tPFA}^c$ and $M \in \mathbf{Loc}$, the multiplication



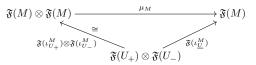
is independent of the choice of $U_{\pm} \in \mathbf{P}_M$, associative and unital w.r.t. $\eta_M := \mathfrak{F}(\emptyset \to M) : \mathbb{K} \to \mathfrak{F}(M).$

- **Def:** For $M \in Loc$, denote by \mathbf{P}_M the category of all pairs $U_{\pm} \subseteq M$ of causally convex open subsets fulfilling the requirements:
 - (i) there exists a Cauchy surface $\Sigma \subset M$ s.t. $U_{\pm} \subseteq I_M^{\pm}(\Sigma)$,
 - (ii) the inclusions $\iota_{U_{\pm}}^{M}: U_{\pm} \to M$ are Cauchy morphisms.

(Morphisms $U_{\pm} \to V_{\pm}$ are given by subset inclusions $U_{\pm} \subseteq V_{\pm}$.)

Prop: For every $M \in \mathbf{Loc}$, the category \mathbf{P}_M is non-empty and connected.

As a consequence, for every $\mathfrak{F} \in \mathbf{tPFA}^c$ and $M \in \mathbf{Loc}$, the multiplication



is independent of the choice of $U_{\pm} \in \mathbf{P}_M$, associative and unital w.r.t. $\eta_M := \mathfrak{F}(\emptyset \to M) : \mathbb{K} \to \mathfrak{F}(M).$

Rem: This step does not yet require the additivity property for \mathfrak{F} , but it crucially relies on Cauchy constancy.

Lem: Let $\mathfrak{F} \in \mathbf{tPFA}^c$ and $f: M \to N$ be Loc-morphism s.t. $f(M) \subseteq N$ is relatively compact. Then $\mathfrak{F}(f): \mathfrak{F}(M) \to \mathfrak{F}(N)$ preserves units and multiplications, i.e. $\mathfrak{F}(f) \circ \eta_M = \eta_N$ and $\mathfrak{F}(f) \circ \mu_M = \mu_N \circ (\mathfrak{F}(f) \otimes \mathfrak{F}(f))$.

- **Lem:** Let $\mathfrak{F} \in \mathbf{tPFA}^c$ and $f: M \to N$ be Loc-morphism s.t. $f(M) \subseteq N$ is relatively compact. Then $\mathfrak{F}(f): \mathfrak{F}(M) \to \mathfrak{F}(N)$ preserves units and multiplications, i.e. $\mathfrak{F}(f) \circ \eta_M = \eta_N$ and $\mathfrak{F}(f) \circ \mu_M = \mu_N \circ (\mathfrak{F}(f) \otimes \mathfrak{F}(f))$.
- **Rem:** The proof uses Bernal/Sanchez to extend a compact achronal subset to a Cauchy surface, hence it relies on the relatively compact assumption.

- **Lem:** Let $\mathfrak{F} \in \mathbf{tPFA}^c$ and $f: M \to N$ be Loc-morphism s.t. $f(M) \subseteq N$ is relatively compact. Then $\mathfrak{F}(f): \mathfrak{F}(M) \to \mathfrak{F}(N)$ preserves units and multiplications, i.e. $\mathfrak{F}(f) \circ \eta_M = \eta_N$ and $\mathfrak{F}(f) \circ \mu_M = \mu_N \circ (\mathfrak{F}(f) \otimes \mathfrak{F}(f))$.
- **Rem:** The proof uses Bernal/Sanchez to extend a compact achronal subset to a Cauchy surface, hence it relies on the relatively compact assumption.
 - ◇ If $\mathfrak{F} \in \mathbf{tPFA}^{\mathrm{add},\mathrm{c}}$ is also additive, $\mathfrak{F}(M) \cong \mathrm{colim}(\mathfrak{F}|_M : \mathbf{RC}_M \to \mathbf{Vec})$ is 'generated' from relatively compact subsets, which allows us to prove

- **Lem:** Let $\mathfrak{F} \in \mathbf{tPFA}^{c}$ and $f: M \to N$ be Loc-morphism s.t. $f(M) \subseteq N$ is relatively compact. Then $\mathfrak{F}(f): \mathfrak{F}(M) \to \mathfrak{F}(N)$ preserves units and multiplications, i.e. $\mathfrak{F}(f) \circ \eta_{M} = \eta_{N}$ and $\mathfrak{F}(f) \circ \mu_{M} = \mu_{N} \circ (\mathfrak{F}(f) \otimes \mathfrak{F}(f))$.
- **Rem:** The proof uses Bernal/Sanchez to extend a compact achronal subset to a Cauchy surface, hence it relies on the relatively compact assumption.
 - ♦ If $\mathfrak{F} \in \mathbf{tPFA}^{\mathrm{add,c}}$ is also additive, $\mathfrak{F}(M) \cong \mathrm{colim}(\mathfrak{F}|_M : \mathbf{RC}_M \to \mathbf{Vec})$ is 'generated' from relatively compact subsets, which allows us to prove
- **Prop:** Let $\mathfrak{F} \in \mathbf{tPFA}^{\mathrm{add}, \mathrm{c}}$ be also additive and $f : M \to N$ any Loc-morphism. Then $\mathfrak{F}(f) : \mathfrak{F}(M) \to \mathfrak{F}(N)$ preserves units and multiplications, hence we may define a functor $\mathfrak{A}_{\mathfrak{F}} : \mathbf{Loc} \to \mathbf{Alg}$.

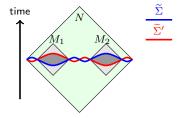
- **Lem:** Let $\mathfrak{F} \in \mathbf{tPFA}^{c}$ and $f: M \to N$ be Loc-morphism s.t. $f(M) \subseteq N$ is relatively compact. Then $\mathfrak{F}(f): \mathfrak{F}(M) \to \mathfrak{F}(N)$ preserves units and multiplications, i.e. $\mathfrak{F}(f) \circ \eta_{M} = \eta_{N}$ and $\mathfrak{F}(f) \circ \mu_{M} = \mu_{N} \circ (\mathfrak{F}(f) \otimes \mathfrak{F}(f))$.
- **Rem:** The proof uses Bernal/Sanchez to extend a compact achronal subset to a Cauchy surface, hence it relies on the relatively compact assumption.
 - ◇ If $\mathfrak{F} \in \mathbf{tPFA}^{\mathrm{add},\mathrm{c}}$ is also additive, $\mathfrak{F}(M) \cong \mathrm{colim}(\mathfrak{F}|_M : \mathbf{RC}_M \to \mathbf{Vec})$ is 'generated' from relatively compact subsets, which allows us to prove
- **Prop:** Let $\mathfrak{F} \in \mathbf{tPFA}^{\mathrm{add},c}$ be also additive and $f: M \to N$ any Loc-morphism. Then $\mathfrak{F}(f): \mathfrak{F}(M) \to \mathfrak{F}(N)$ preserves units and multiplications, hence we may define a functor $\mathfrak{A}_{\mathfrak{F}}: \mathbf{Loc} \to \mathbf{Alg}$.

This construction is functorial $\mathfrak{A}_{(-)}: \mathbf{tPFA}^{\mathrm{add},\mathrm{c}} \to \mathbf{Fun}(\mathbf{Loc}, \mathbf{Alg}).$

Lem: Let $\mathfrak{F} \in \mathbf{tPFA}^c$ and $(f_1 : M_1 \to N, f_2 : M_2 \to N)$ causally disjoint s.t. both $f_1(M_1), f_2(M_2) \subseteq N$ are relatively compact. In this case $\mathfrak{A}_{\mathfrak{F}} : \mathbf{Loc} \to \mathbf{Alg}$ satisfies Einstein causality, i.e. $\mu_N \circ (\mathfrak{F}(f_1) \otimes \mathfrak{F}(f_2)) = \mu_N^{\mathrm{op}} \circ (\mathfrak{F}(f_1) \otimes \mathfrak{F}(f_2))$.

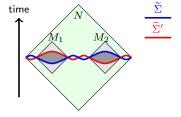
Lem: Let $\mathfrak{F} \in \mathbf{tPFA}^c$ and $(f_1 : M_1 \to N, f_2 : M_2 \to N)$ causally disjoint s.t. both $f_1(M_1), f_2(M_2) \subseteq N$ are relatively compact. In this case $\mathfrak{A}_{\mathfrak{F}} : \mathbf{Loc} \to \mathbf{Alg}$ satisfies Einstein causality, i.e. $\mu_N \circ (\mathfrak{F}(f_1) \otimes \mathfrak{F}(f_2)) = \mu_N^{\mathrm{op}} \circ (\mathfrak{F}(f_1) \otimes \mathfrak{F}(f_2))$.

Rem: Again, the relatively compact assumption is crucial to extend Cauchy surfaces. The key step to prove Einstein causality is to find two Cauchy surfaces of N with opposite time-order when restricted to M_1 and M_2 .



Lem: Let $\mathfrak{F} \in \mathbf{tPFA}^c$ and $(f_1 : M_1 \to N, f_2 : M_2 \to N)$ causally disjoint s.t. both $f_1(M_1), f_2(M_2) \subseteq N$ are relatively compact. In this case $\mathfrak{A}_{\mathfrak{F}} : \mathbf{Loc} \to \mathbf{Alg}$ satisfies Einstein causality, i.e. $\mu_N \circ (\mathfrak{F}(f_1) \otimes \mathfrak{F}(f_2)) = \mu_N^{\mathrm{op}} \circ (\mathfrak{F}(f_1) \otimes \mathfrak{F}(f_2))$.

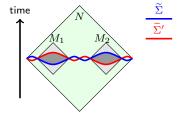
Rem: Again, the relatively compact assumption is crucial to extend Cauchy surfaces. The key step to prove Einstein causality is to find two Cauchy surfaces of N with opposite time-order when restricted to M_1 and M_2 .



Prop:
$$\mathfrak{A}_{\mathfrak{F}} \in \mathbf{AQFT}^{\mathrm{add},\mathrm{c}}$$
, for every $\mathfrak{F} \in \mathbf{tPFA}^{\mathrm{add},\mathrm{c}}$.

Lem: Let $\mathfrak{F} \in \mathbf{tPFA}^c$ and $(f_1 : M_1 \to N, f_2 : M_2 \to N)$ causally disjoint s.t. both $f_1(M_1), f_2(M_2) \subseteq N$ are relatively compact. In this case $\mathfrak{A}_{\mathfrak{F}} : \mathbf{Loc} \to \mathbf{Alg}$ satisfies Einstein causality, i.e. $\mu_N \circ (\mathfrak{F}(f_1) \otimes \mathfrak{F}(f_2)) = \mu_N^{\mathrm{op}} \circ (\mathfrak{F}(f_1) \otimes \mathfrak{F}(f_2))$.

Rem: Again, the relatively compact assumption is crucial to extend Cauchy surfaces. The key step to prove Einstein causality is to find two Cauchy surfaces of N with opposite time-order when restricted to M_1 and M_2 .



 $\begin{array}{l} \textbf{Prop:} \ \mathfrak{A}_{\mathfrak{F}} \in \mathbf{AQFT}^{\mathrm{add},\mathrm{c}} \text{, for every } \mathfrak{F} \in \mathbf{tPFA}^{\mathrm{add},\mathrm{c}}.\\ \text{This construction is functorial } \mathfrak{A}_{(-)}: \mathbf{tPFA}^{\mathrm{add},\mathrm{c}} \to \mathbf{AQFT}^{\mathrm{add},\mathrm{c}}. \end{array}$

Summary of the Main Equivalence Theorem

Theorem (Benini, Perin, AS)

The two functors

$$\diamond~\mathfrak{F}_{(-)}:\mathbf{AQFT}^{\mathrm{add},\mathrm{c}}\to\mathbf{tPFA}^{\mathrm{add},\mathrm{c}}$$
 , and

$$\diamond \ \mathfrak{A}_{(-)}: \mathbf{tPFA}^{\mathrm{add},\mathrm{c}} \to \mathbf{AQFT}^{\mathrm{add},\mathrm{c}}$$

described before are inverses of each other. Hence, they define an equivalence

$$\mathfrak{A}_{(-)} \, : \, \mathbf{tPFA}^{\mathrm{add}, \mathrm{c}} \, \xleftarrow{} \, \mathbf{AQFT}^{\mathrm{add}, \mathrm{c}} \, : \, \mathfrak{F}_{(-)}$$

between the category of Cauchy constant additive time-orderable prefactorization algebras on Loc and the category of Cauchy constant additive AQFTs on Loc.

Summary of the Main Equivalence Theorem

Theorem (Benini,Perin,AS)

The two functors

$$\diamond \ \mathfrak{F}_{(-)}: \mathbf{AQFT}^{\mathrm{add},\mathrm{c}} o \mathbf{tPFA}^{\mathrm{add},\mathrm{c}}$$
 , and

$$\diamond \ \mathfrak{A}_{(-)}: \mathbf{tPFA}^{\mathrm{add},\mathrm{c}} \to \mathbf{AQFT}^{\mathrm{add},\mathrm{c}}$$

described before are inverses of each other. Hence, they define an equivalence

$$\mathfrak{A}_{(-)} \,:\, \mathbf{tPFA}^{\mathrm{add},\mathrm{c}} \, \xleftarrow{} \, \mathbf{AQFT}^{\mathrm{add},\mathrm{c}} \, :\, \mathfrak{F}_{(-)}$$

between the category of Cauchy constant additive time-orderable prefactorization algebras on Loc and the category of Cauchy constant additive AQFTs on Loc.

Thanks for your attention!