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Zoology of mathematical QFT

TQFT

AQFT Factorization Algebras

Scheimbauer; Dwyer,Stolz,Teichner???

Gwilliam,Rejzner (Example: KG theory)

Theorem (Benini,Perin,AS)

There exists an equivalence

tPFAadd,c ∼
//
AQFTadd,c

oo

between the category of Cauchy constant additive time-orderable prefactorization
algebras on Loc and the category of Cauchy constant additive AQFTs on Loc.

� Goals of this talk:

1. Introduce necessary concepts to understand formulation of theorem

2. Sketch the key ingredients for its proof
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Some background on spacetimes

� Spacetime := oriented and time-oriented
globally hyperbolic Lorentzian manifold N

� Spacetime embedding := orientation and
time-orientation preserving isometric
embedding f : M → N s.t. f(M) ⊆ N is
open and causally convex

Def: Denote by Loc the category of spacetimes
and spacetime embeddings.

time

N

Σ

M

M

Σ
M1 M2M1 M2

M3

M3 M1

M2

ρ

� The following (tuples of) Loc-morphisms will be important:

(i) Cauchy morphism: f : M → N s.t. f(M) ⊆ N contains Cauchy surface of N

(ii) Causally disjoint pair: (f1 : M1 → N, f2 : M2 → N) s.t.
JN (f1(M1)) ∩ f2(M2) = ∅

(iii) Time-ordered tuple: f = (f1, . . . , fn) : M = (M1, . . . ,Mn)→ N s.t.

J+
N (fi(Mi)) ∩ fj(Mj) = ∅, for all i < j

(iv) Time-orderable tuple: f : M → N s.t. there exists ρ ∈ Σn (time-ordering
permutation) with fρ = (fρ(1), . . . , fρ(n)) : Mρ→ N time-ordered
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Time-orderable prefactorization algebras on Loc

� A tPFA F on Loc is given by the following data:

(1) for each spacetime M ∈ Loc, a vector space F(M) ∈ Vec (of observables)

(2) for each time-orderable f : M → N , a linear map F(f) :
⊗n

i=1 F(Mi)→ F(N)
(factorization product), with F(∅ → N) : K→ F(N) for empty tuples,

such that the following axioms hold true:

Composition: Unitality: Equivariance:

n⊗
i=1

ki⊗
j=1

F(Lij)

F(f(g
1
,...,g

n
))

''

⊗
i F(gi

)
//
n⊗
i=1

F(Mi)

F(f)

��

F(N)

F(idM ) = idF(M)

n⊗
i=1

F(Mi)

permute

��

F(f)
// F(N)

n⊗
i=1

F(Mσ(i))

F(fσ)

99

Def: Denote by tPFA the category of tPFAs on Loc with morphisms given by
natural transformations (of multifunctors).

Concretely, a morphism ζ : F→ G is a family of linear maps ζM : F(M)→ G(M), for all

M ∈ Loc, that is compatible with the factorization products in the sense that

ζN ◦ F(f) = F(f) ◦
⊗
i ζMi , for all f : M → N .
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Further natural hypotheses on tPFAs

Def: F ∈ tPFA is called Cauchy constant if F(f) : F(M)
∼=−→ F(N) is

isomorphism for all Cauchy morphisms f : M → N .

Denote by tPFAc ⊆ tPFA the full subcategory of Cauchy constant tPFAs.

Rem: Cauchy constancy (aka time-slice) encodes a concept of time evolution.

Def: For M ∈ Loc, let RCM denote the category of relatively compact and
causally convex open subsets U ⊆M .

F ∈ tPFA is called additive if

colim
(
F|M : RCM → Vec

) ∼=−→ F(M)

is isomorphism, for all M ∈ Loc.

Denote by tPFAadd ⊆ tPFA the full subcategory of additive tPFAs and by
tPFAadd,c ⊆ tPFA the full subcategory of Cauchy constant additive tPFAs.
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Algebraic quantum field theories on Loc

� An AQFT on Loc is a functor A : Loc→ Alg := AlgAs(Vec) satisfying the
Einstein causality axiom: For causally disjoint (f1 : M1 → N, f2 : M2 → N),

A(M1)⊗ A(M2)

A(f1)⊗A(f2)

��

A(f1)⊗A(f2)
// A(N)⊗ A(N)

µop
N

��

A(N)⊗ A(N)
µN

// A(N)

Slogan: Any two spacelike separated observables commute with each other.

Def: Denote by AQFT the category of AQFTs on Loc with morphisms given by
natural transformations.

Rem: Cauchy constancy and additivity can be defined for AQFTs as well.

Denote the corresponding full subcategories by AQFTc, AQFTadd and
AQFTadd,c for Cauchy constant additive AQFTs.

. . . and this now sets the stage for our Comparison Theorem.
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From AQFT to tPFA . . . the easy direction

� Let A ∈ AQFT (Cauchy constancy and additivity not needed here!)

� For time-orderable f : M → N with time-ordering permutation ρ ∈ Σn,
define time-ordered product FA(f) :

⊗n
i=1 A(Mi)→ A(N) by

n⊗
i=1

A(Mi)

permute
��

FA(f)
// A(N)

n⊗
i=1

A(Mρ(i)) ⊗
i A(fρ(i))

// A(N)⊗n

µ
(n)
N

OO

Prop: FA ∈ tPFA, for every A ∈ AQFT.

This construction is functorial F(−) : AQFT→ tPFA and it restricts to

Cauchy constant additive theories F(−) : AQFTadd,c → tPFAadd,c.

Rem: The functor F(−) : AQFT→ tPFA arises as pullback of a colored operad
morphism Φ : PLoc → OLoc from the AQFT operad to the tPFA operad.

By abstract non-sense (operadic left Kan extension), there exists adjunction

Φ! : tPFA // AQFT : Φ∗ = F(−)oo

which however is not an adjoint equivalence.
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From tPFA to AQFT . . . the harder direction

� Let F ∈ tPFAadd,c
(Cauchy constancy and additivity are now crucial!)

� Wanted: Multiplication maps µM : F(M)⊗ F(M)→ F(M), for each
M ∈ Loc, that endow F with the structure of an AQFT.

� Idea: Choose Cauchy surface Σ ⊂M , consider
chronological future/past part Σ± := I±M (Σ)
and define via Cauchy constancy

F(M)⊗ F(M)
µM // F(M)

F(Σ+)⊗ F(Σ−)

∼=

F(ιMΣ+
)⊗F(ιMΣ−

)

hh

F(ιMΣ )

77

time
M

Σ

Σ+

Σ−

� Important questions:

1. Is µM independent of the choice of Cauchy surface Σ ⊂M?

2. Is the family of µM natural w.r.t. F(f) : F(M)→ F(N)?

3. Do the µM fulfill the Einstein causality axiom of AQFT?
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chronological future/past part Σ± := I±M (Σ)
and define via Cauchy constancy

F(M)⊗ F(M)
µM // F(M)

F(Σ+)⊗ F(Σ−)

∼=

F(ιMΣ+
)⊗F(ιMΣ−

)

hh

F(ιMΣ )

77

time
M

Σ

Σ+

Σ−

� Important questions:

1. Is µM independent of the choice of Cauchy surface Σ ⊂M?

2. Is the family of µM natural w.r.t. F(f) : F(M)→ F(N)?

3. Do the µM fulfill the Einstein causality axiom of AQFT?
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Question 1: Uniqueness of object-wise multiplications

Def: For M ∈ Loc, denote by PM the category of all pairs U± ⊆M of causally
convex open subsets fulfilling the requirements:

(i) there exists a Cauchy surface Σ ⊂M s.t. U± ⊆ I±M (Σ),

(ii) the inclusions ιMU± : U± →M are Cauchy morphisms.

(Morphisms U± → V± are given by subset inclusions U± ⊆ V±.)

Prop: For every M ∈ Loc, the category PM is non-empty and connected.

As a consequence, for every F ∈ tPFAc and M ∈ Loc, the multiplication

F(M)⊗ F(M)
µM // F(M)

F(U+)⊗ F(U−)

∼=

F(ιMU+
)⊗F(ιMU−

)

ii

F(ιMU )

77

is independent of the choice of U± ∈ PM , associative and unital w.r.t.
ηM := F(∅ →M) : K→ F(M).

Rem: This step does not yet require the additivity property for F, but it crucially
relies on Cauchy constancy.
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Question 2: Naturality of multiplications

Lem: Let F ∈ tPFAc and f : M → N be Loc-morphism s.t. f(M) ⊆ N is
relatively compact. Then F(f) : F(M)→ F(N) preserves units and
multiplications, i.e. F(f) ◦ ηM = ηN and F(f) ◦ µM = µN ◦ (F(f)⊗ F(f)).

Rem: The proof uses Bernal/Sanchez to extend a compact achronal subset to a
Cauchy surface, hence it relies on the relatively compact assumption.

� If F ∈ tPFAadd,c is also additive, F(M) ∼= colim
(
F|M : RCM → Vec

)
is

‘generated’ from relatively compact subsets, which allows us to prove

Prop: Let F ∈ tPFAadd,c be also additive and f : M → N any Loc-morphism.
Then F(f) : F(M)→ F(N) preserves units and multiplications, hence we
may define a functor AF : Loc→ Alg.

This construction is functorial A(−) : tPFAadd,c → Fun(Loc,Alg).
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Question 3: Einstein causality

Lem: Let F ∈ tPFAc and (f1 : M1 → N, f2 : M2 → N) causally disjoint s.t. both
f1(M1), f2(M2) ⊆ N are relatively compact. In this case AF : Loc→ Alg
satisfies Einstein causality, i.e. µN ◦ (F(f1)⊗ F(f2)) = µop

N ◦ (F(f1)⊗ F(f2)).

Rem: Again, the relatively compact assumption is
crucial to extend Cauchy surfaces. The key
step to prove Einstein causality is to find
two Cauchy surfaces of N with opposite
time-order when restricted to M1 and M2.

N

M1 M2

Σ̃

Σ̃′

time

Prop: AF ∈ AQFTadd,c, for every F ∈ tPFAadd,c.

This construction is functorial A(−) : tPFAadd,c → AQFTadd,c.
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Summary of the Main Equivalence Theorem

Theorem (Benini,Perin,AS)

The two functors

� F(−) : AQFTadd,c → tPFAadd,c, and

� A(−) : tPFAadd,c → AQFTadd,c

described before are inverses of each other. Hence, they define an equivalence

A(−) : tPFAadd,c ∼
//
AQFTadd,c

oo : F(−)

between the category of Cauchy constant additive time-orderable prefactorization
algebras on Loc and the category of Cauchy constant additive AQFTs on Loc.

Thanks for your attention!
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