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Zoology of mathematical QFT

2727 Scheimbauer; Dwyer,Stolz, Teichner

@ ¢ » ( Factorization Algebras
Gwilliam,Rejzner (Example: KG theory)

Theorem (Benini,Perin,AS)

There exists an equivalence
tPFAadd,c — AQFTadd,c

between the category of Cauchy constant additive time-orderable prefactorization
algebras on Loc and the category of Cauchy constant additive AQFTs on Loc.

¢ Goals of this talk:
1. Introduce necessary concepts to understand formulation of theorem

2. Sketch the key ingredients for its proof
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Some background on spacetimes
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embedding f : M — N s.t. f(M)C N is

open and causally convex @
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Some background on spacetimes

© Spacetime := oriented and time-oriented time a
globally hyperbolic Lorentzian manifold NV N

© Spacetime embedding := orientation and

time-orientation preserving isometric

embedding f : M — N s.t. f(M)C Nis p

open and causally convex @
Def: Denote by Loc the category of spacetimes

and spacetime embeddings.

o The following (tuples of) Loc-morphisms will be important:

(i) Cauchy morphism: f: M — N s.t. f(M) C N contains Cauchy surface of N
(i) Causally disjoint pair: (fi1 : M1 — N, fa: M2 — N) s.t.
In(fi(M1)) N f2a(M2) =0
(iii) Time-ordered tuple: f = (f1,...,fn) : M = (M1,...,M,) = N st.
JH(fi( M) N f (M) =0, for all 4 < j
(iv) Time-orderable tuple: f: M — N s.t. there exists p € ¥, (time-ordering
permutation) with fp = (fp1),- -+, fon)) : Mp — N time-ordered
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Time-orderable prefactorization algebras on Loc

o A tPFA § on Loc is given by the following data:
(1) for each spacetime M € Loc, a vector space §(M) € Vec (of observables)
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Time-orderable prefactorization algebras on Loc

o A tPFA § on Loc is given by the following data:

(1) for each spacetime M € Loc, a vector space §(M) € Vec (of observables)
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(2) for each time-orderable f : M — N, a linear map §(f) : Q;_; §(M;) — F(N)
(factorization product), with (0 — N) : K — §(N) for empty tuples,

such that the following axioms hold true:

Composition: Unitality: Equivariance:
n o ki ®:3(g,) n . . n ()
® ®15(L,J) — @1 3(My) F(idar) = idgean ®1 F(M;) ——=——F(N)
2152 i iz
5 M]M_N Jce@ permut{ A
F(N) g (M)

Alexander Schenkel FA vs AQFT NBMPS 56, York 4 / 12



Time-orderable prefactorization algebras on Loc

o A tPFA § on Loc is given by the following data:
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(2) for each time-orderable f : M — N, a linear map §(f) : Q;_; §(M;) — F(N)
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Def: Denote by tPFA the category of tPFAs on Loc with morphisms given by
natural transformations (of multifunctors).
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o A tPFA § on Loc is given by the following data:

(1) for each spacetime M € Loc, a vector space §(M) € Vec (of observables)

(2) for each time-orderable f : M — N, a linear map §(f) : Q;_; §(M;) — F(N)
(factorization product), with (0 — N) : K — §(N) for empty tuples,

such that the following axioms hold true:

Composition: Unitality: Equivariance:
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2152 i i<
5 M]M_N Ja@ permut{ A
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Def: Denote by tPFA the category of tPFAs on Loc with morphisms given by
natural transformations (of multifunctors).

Concretely, a morphism ¢ : § — & is a family of linear maps (s : F(M) — &(M), for all
M € Loc, that is compatible with the factorization products in the sense that

CnoF(f) =3(f) o ®; Cnry, forall f: M — N.
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Further natural hypotheses on tPFAs

Def: § € tPFA is called Cauchy constant if §(f) : §(M) —» F(N) is
isomorphism for all Cauchy morphisms f: M — N.
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Denote by tPFA° C tPFA the full subcategory of Cauchy constant tPFAs.

Rem: Cauchy constancy (aka time-slice) encodes a concept of time evolution.
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Def: § € tPFA is called Cauchy constant if §(f) : §(M) —» F(N) is
isomorphism for all Cauchy morphisms f: M — N.

Denote by tPFA° C tPFA the full subcategory of Cauchy constant tPFAs.
Rem: Cauchy constancy (aka time-slice) encodes a concept of time evolution.

Def: For M € Loc, let RC); denote the category of relatively compact and
causally convex open subsets U C M.

§ € tPFA is called additive if
colim(S|M . RCys — Vec) N

is isomorphism, for all M € Loc.

Denote by tPFA®Y C tPFA the full subcategory of additive tPFAs and by
tPFA*9¢ C tPFA the full subcategory of Cauchy constant additive tPFAs.

Rem: Additivity encodes a concept of compact support for observables.
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Def

Rem:

Def:

Rem:

Prop

rther natural hypotheses on tPFAs

: § € tPFA is called Cauchy constant if F(f) : §(M) = F(N) is

isomorphism for all Cauchy morphisms f: M — N.
Denote by tPFA° C tPFA the full subcategory of Cauchy constant tPFAs.

Cauchy constancy (aka time-slice) encodes a concept of time evolution.

For M € Loc, let RC,; denote the category of relatively compact and
causally convex open subsets U C M.

§ € tPFA is called additive if
colim(S|M . RCys — Vec) N

is isomorphism, for all M € Loc.

Denote by tPFA®Y C tPFA the full subcategory of additive tPFAs and by
tPFA*9¢ C tPFA the full subcategory of Cauchy constant additive tPFAs.

Additivity encodes a concept of compact support for observables.

: Every factorization algebra § on Loc (i.e. a tPFA satisfying Weiss descent) is

an additive tPFA.
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Algebraic quantum field theories on Loc

o An AQFT on Loc is a functor 2 : Loc — Alg := Alg, (Vec) satisfying the
Einstein causality axiom: For causally disjoint (f; : M7 — N, fo : My — N),

A(M;) @ A(My) “IV2MID o (N @ 21(V)

Ql(fl)®91(f2)l J/N?\P

A(N) @ AN) —————A(N)
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Algebraic quantum field theories on Loc

o An AQFT on Loc is a functor 2 : Loc — Alg := Alg, (Vec) satisfying the
Einstein causality axiom: For causally disjoint (f; : M7 — N, fo : My — N),

A(M;) @ A(My) “IV2MID o (N @ 21(V)

Ql(.f1)®91(fz)l J/N?\P

A(N) @ AN) —————A(N)

Slogan: Any two spacelike separated observables commute with each other.

Def: Denote by AQFT the category of AQFTs on Loc with morphisms given by
natural transformations.

Rem: Cauchy constancy and additivity can be defined for AQFTs as well.

Denote the corresponding full subcategories by AQFT®, AQFT*!¢ and
AQFT4¢ for Cauchy constant additive AQFTs.

. and this now sets the stage for our Comparison Theorem.
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From AQFT to tPFA ... the easy direction

o Let A € AQFT (Cauchy constancy and additivity not needed here!)
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From AQFT to tPFA ... the easy direction

o Let A € AQFT (Cauchy constancy and additivity not needed here!)

o For time-orderable i : M — N with time-ordering permutation p € >3,,,
define time-ordered product Fu(f) : Q;_q A(M;) — A(N) by
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define time-ordered product Fu(f) : Q;_q A(M;) — A(N) by
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Prop: §o € tPFA, for every 2l € AQFT.
This construction is functorial §_) : AQFT — tPFA and it restricts to
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From AQFT to tPFA ... the easy direction

o Let A € AQFT (Cauchy constancy and additivity not needed here!)

o For time-orderable i : M — N with time-ordering permutation p € >3,,,
define time-ordered product Fu(f) : Q;_q A(M;) — A(N) by

n Sa(f)
@ A(M;) - A(N)
i=1
permutel TH‘E\?)
D AM,(;) —————— s A(N)E"
g ( /(1)) Qi A(foi)) ( )

Prop: §o € tPFA, for every 2l € AQFT.
This construction is functorial §_) : AQFT — tPFA and it restricts to
Cauchy constant additive theories §(_) : AQFTde _y tpFA2dde,

Rem: The functor §_) : AQFT — tPFA arises as pullback of a colored operad
morphism @ : Proc — OLoc from the AQFT operad to the tPFA operad.
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From AQFT to tPFA ... the easy direction

<

o

Let A € AQFT (Cauchy constancy and additivity not needed here!)

For time-orderable f : M — N with time-ordering permutation p € 3J,,,
define time-ordered product Fu(f) : Q;_q A(M;) — A(N) by

n Sa(f)
@ A(M;) - A(N)
i=1
permutel THE{})
D AM,(;) —————— s A(N)E"
g ( o )) Qi A(foi)) ( )

Prop: §o € tPFA, for every 2l € AQFT.

Rem:

This construction is functorial §_) : AQFT — tPFA and it restricts to
Cauchy constant additive theories §(_) : AQFTde _y tpFA2dde,

The functor §_) : AQFT — tPFA arises as pullback of a colored operad
morphism @ : Proc — OLoc from the AQFT operad to the tPFA operad.

By abstract non-sense (operadic left Kan extension), there exists adjunction
o, : tPFA 7 AQFT : & =5,

which however is not an adjoint equivalence.
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From tPFA to AQFT ... the harder direction

o Let § € 1:1:']:7‘Aadd’C (Cauchy constancy and additivity are now crucial!)
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From tPFA to AQFT ... the harder direction

o Let § € tPFAa”dd’C (Cauchy constancy and additivity are now crucial!)

o Wanted: Multiplication maps s : §(M) ® §(M) — §(M), for each
M € Loc, that endow § with the structure of an AQFT.
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From tPFA to AQFT ... the harder direction

o Let § € tPFAadd’C (Cauchy constancy and additivity are now crucial!)

o Wanted: Multiplication maps ups : §(M) @ F(M) — §(M), for each
M € Loc, that endow § with the structure of an AQFT.

¢ Idea: Choose Cauchy surface ¥ C M, consider  time

chronological future/past part X := I3 (%) s, M
and define via Cauchy constancy
UM D)
F(M) @F(M) : (M)

o~ 2
3(”%2 )m /g

(54 @F(3-)
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From tPFA to AQFT ... the harder direction

o Let § € tPFAadd’C (Cauchy constancy and additivity are now crucial!)

o Wanted: Multiplication maps ups : §(M) @ F(M) — §(M), for each
M € Loc, that endow § with the structure of an AQFT.

¢ Idea: Choose Cauchy surface ¥ C M, consider  time
chronological future/past part X := I3 (%) s, M
and define via Cauchy constancy

2273

(M) @ F(M)

D
S(CREL{C ) %

o Important questions:

1%

1. Is par independent of the choice of Cauchy surface ¥ C M?
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From tPFA to AQFT ... the harder direction

o Let § € tPFAadd’C (Cauchy constancy and additivity are now crucial!)

o Wanted: Multiplication maps ups : §(M) @ F(M) — §(M), for each
M € Loc, that endow § with the structure of an AQFT.

¢ Idea: Choose Cauchy surface ¥ C M, consider  time
chronological future/past part X := I3 (%) s, M
and define via Cauchy constancy

2273

(M) @ F(M)

D
S(CREL{C ) %

o Important questions:

1%

1. Is par independent of the choice of Cauchy surface ¥ C M?
2. Is the family of pas natural w.r.t. F(f) : F(M) — F(N)?
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From tPFA to AQFT ... the harder direction

o Let § € tPFAadd’C (Cauchy constancy and additivity are now crucial!)

o Wanted: Multiplication maps ups : §(M) @ F(M) — §(M), for each
M € Loc, that endow § with the structure of an AQFT.

¢ Idea: Choose Cauchy surface ¥ C M, consider  time
chronological future/past part X := I3 (%) s, M
and define via Cauchy constancy

2273

(M) @ F(M)

D
CRE G %

o Important questions:

1%

1. Is par independent of the choice of Cauchy surface ¥ C M?
2. Is the family of pas natural w.r.t. F(f) : F(M) — F(N)?
3. Do the pas fulfill the Einstein causality axiom of AQFT?
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Question 1: Uniqueness of object-wise multiplications

Def: For M € Loc, denote by P, the category of all pairs Uy C M of causally
convex open subsets fulfilling the requirements:

(i) there exists a Cauchy surface ¥ C M s.t. Uy C 15 (D),

(i) the inclusions LAU/[i : U+ — M are Cauchy morphisms.
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convex open subsets fulfilling the requirements:

(i) there exists a Cauchy surface ¥ C M s.t. Uy C 15 (D),

(i) the inclusions LAU/[i : U+ — M are Cauchy morphisms.

(Morphisms Uy — V4 are given by subset inclusions U+ C Vi)
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Question 1: Uniqueness of object-wise multiplications

Def: For M € Loc, denote by P, the category of all pairs Uy C M of causally
convex open subsets fulfilling the requirements:

(i) there exists a Cauchy surface ¥ C M s.t. Uy C 15 (D),

(i) the inclusions LAU/[i : U+ — M are Cauchy morphisms.

(Morphisms Uy — V4 are given by subset inclusions U+ C Vi)

Prop: For every M € Loc, the category P is non-empty and connected.
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Question 1: Uniqueness of object-wise multiplications

Def: For M € Loc, denote by P, the category of all pairs Uy C M of causally
convex open subsets fulfilling the requirements:
(i) there exists a Cauchy surface ¥ C M s.t. Uy C 15 (D),

(i) the inclusions LAU/[i : U+ — M are Cauchy morphisms.
(Morphisms Uy — V4 are given by subset inclusions U+ C Vi)

Prop: For every M € Loc, the category P is non-empty and connected.
As a consequence, for every § € tPFA° and M € Loc, the multiplication

F(M) @ F(M) = §(M)

5(1/;&:% %K)

3(Uy) @3(U-)

is independent of the choice of Uy € P, associative and unital w.r.t.
Ny =50 = M) : K — F(M).
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Question 1: Uniqueness of object-wise multiplications

Def: For M € Loc, denote by P, the category of all pairs Uy C M of causally
convex open subsets fulfilling the requirements:
(i) there exists a Cauchy surface ¥ C M s.t. Uy C 15 (D),

(i) the inclusions LAU/[i : U+ — M are Cauchy morphisms.
(Morphisms Uy — V4 are given by subset inclusions U+ C Vi)

Prop: For every M € Loc, the category P is non-empty and connected.
As a consequence, for every § € tPFA° and M € Loc, the multiplication

F(M) @ F(M) = §(M)

5(1/;&:% %K)

3(Uy) @3(U-)

is independent of the choice of Uy € P, associative and unital w.r.t.
Ny =50 = M) : K — F(M).

Rem: This step does not yet require the additivity property for §, but it crucially
relies on Cauchy constancy.
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Question 2: Naturality of multiplications

Lem: Let § € tPFA° and f : M — N be Loc-morphism s.t. f(M)C N is
relatively compact. Then F(f) : §(M) — §(N) preserves units and

multiplications, i.e. §() o s = n and F(f) o jiar = v © (3(f) © 3(F)).
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Question 2: Naturality of multiplications

Lem: Let § € tPFA° and f : M — N be Loc-morphism s.t. f(M)C N is
relatively compact. Then F(f) : §(M) — §(N) preserves units and
multiplications, i.e. §(f) o s = nv and (1) o juar = un © (3() @ F(F)).

Rem: The proof uses Bernal/Sanchez to extend a compact achronal subset to a
Cauchy surface, hence it relies on the relatively compact assumption.
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relatively compact. Then F(f) : §(M) — §(N) preserves units and

multiplications, i.e. §() o s = n and F(f) o jiar = v © (3(f) © 3(F)).

Rem: The proof uses Bernal/Sanchez to extend a compact achronal subset to a
Cauchy surface, hence it relies on the relatively compact assumption.

o If § € tPFA*9° is also additive, §(M) = colim(§|a : RCps — Vec) is
‘generated’ from relatively compact subsets, which allows us to prove
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Question 2: Naturality of multiplications

Lem: Let § € tPFA° and f : M — N be Loc-morphism s.t. f(M)C N is
relatively compact. Then F(f) : §(M) — §(N) preserves units and

multiplications, i.e. §(f) o =1y and §(f) o par = e © (F() © F(f)).

Rem: The proof uses Bernal/Sanchez to extend a compact achronal subset to a
Cauchy surface, hence it relies on the relatively compact assumption.

o If § € tPFA*9° is also additive, §(M) = colim(§|a : RCps — Vec) is
‘generated’ from relatively compact subsets, which allows us to prove

Prop: Let § € tPFA*4C be also additive and f : M — N any Loc-morphism.
Then F(f) : §(M) — §F(N) preserves units and multiplications, hence we
may define a functor 2z : Loc — Alg.
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Question 2: Naturality of multiplications

Lem: Let § € tPFA° and f : M — N be Loc-morphism s.t. f(M)C N is
relatively compact. Then F(f) : §(M) — §(N) preserves units and
multiplications, i.e. §(f) o nar = v and §(f) o uar = v o (3(f) © F(F).

Rem: The proof uses Bernal/Sanchez to extend a compact achronal subset to a
Cauchy surface, hence it relies on the relatively compact assumption.

o If § € tPFA*9° is also additive, §(M) = colim(§|a : RCps — Vec) is
‘generated’ from relatively compact subsets, which allows us to prove

Prop: Let § € tPFA*4C be also additive and f : M — N any Loc-morphism.
Then F(f) : §(M) — §F(N) preserves units and multiplications, hence we
may define a functor 2z : Loc — Alg.

This construction is functorial 2(_) : tPFA™4° _ Fun(Loc, Alg).
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Question 3: Einstein causality

Lem: Let § € tPFA° and (f; : M1 — N, f5 : My — N) causally disjoint s.t. both
f1(My), fa(M3) C N are relatively compact. In this case 20z : Loc — Alg
satisfies Einstein causality, i.e. uy o (F(f1) @ §(f2)) = uy o (F(f1) @ F(f2)).
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Question 3: Einstein causality

Lem: Let § € tPFA° and (f; : M1 — N, f5 : My — N) causally disjoint s.t. both
f1(My), fa(M3) C N are relatively compact. In this case 20z : Loc — Alg
satisfies Einstein causality, i.e. uy o (F(f1) @ §(f2)) = uy o (F(f1) @ F(f2)).

time by

Rem: Again, the relatively compact assumption is o
crucial to extend Cauchy surfaces. The key
step to prove Einstein causality is to find
two Cauchy surfaces of N with opposite
time-order when restricted to M and M.
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Question 3: Einstein causality

Lem: Let § € tPFA° and (f; : M1 — N, f5 : My — N) causally disjoint s.t. both
f1(My), fa(M3) C N are relatively compact. In this case 20z : Loc — Alg
satisfies Einstein causality, i.e. uy o (F(f1) @ §(f2)) = uy o (F(f1) @ F(f2)).

time by

Rem: Again, the relatively compact assumption is o
crucial to extend Cauchy surfaces. The key
step to prove Einstein causality is to find
two Cauchy surfaces of N with opposite
time-order when restricted to M and M.

Prop: Ql@ c AQFTadd’C, for every e tPFAadd’C,

Alexander Schenkel FA vs AQFT NBMPS 56, York 11 / 12



Question 3: Einstein causality

Lem:

Rem:

Prop:

Let § € tPFA° and (f; : M1 — N, fo : My — N) causally disjoint s.t. both
f1(My), fa(M3) C N are relatively compact. In this case 20z : Loc — Alg
satisfies Einstein causality, i.e. uy o (F(f1) @ §(f2)) = uy o (F(f1) @ F(f2)).

time )

Again, the relatively compact assumption is b
crucial to extend Cauchy surfaces. The key

step to prove Einstein causality is to find

two Cauchy surfaces of N with opposite

time-order when restricted to M and M.

Az € AQFT*C for every § € tPFA 4,
This construction is functorial 2(_) : tPFA®dc , AQFT2dde,
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Summary of the Main Equivalence Theorem

Theorem (Benini,Perin,AS)

The two functors

0§y AQFT*4C — tPFA*4C, and

o Ay tPFA*YC 5 AQFT4°

described before are inverses of each other. Hence, they define an equivalence
. add,c ——— add,c
2y : tPFA ~ * AQFT T

between the category of Cauchy constant additive time-orderable prefactorization
algebras on Loc and the category of Cauchy constant additive AQFTs on Loc.

Alexander Schenkel FA vs AQFT NBMPS 56, York 12 / 12



Summary of the Main Equivalence Theorem

Theorem (Benini,Perin,AS)

The two functors

0§y AQFT*4C — tPFA*4C, and

o Ay tPFA*YC 5 AQFT4°

described before are inverses of each other. Hence, they define an equivalence
. add,c ——— add,c
2y : tPFA ~ * AQFT T

between the category of Cauchy constant additive time-orderable prefactorization
algebras on Loc and the category of Cauchy constant additive AQFTs on Loc.

Thanks for your attention!
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