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Background and motivation
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Recap: Connections on modules

o Let A be NC algebra and (2°,d) differential calculus over 4, i.e.

Q‘:@Q“ with Q0=4

n>0
and d satisfies graded Leibniz rule

dww') = (dw) ' 4 (=1)“lw (dw")

o A connection on a right A-module V is a linearmap V:V = V @4 Q!
satisfying the right Leibniz rule

V(va) =V@w)a+v®4da

o The set of connections Con(V) is affine space over Hom4 (V,V @4 Q).
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Connections on bimodules

o Let now V be an A-bimodule. What are connections on V7
o Usual approach: Bimodule connections [Mourad,Dubois-Violette,Masson,. . . ]

A right module connection V : V — V ®4 Q! together with an A-bimodule
homomorphism ¢ : Q' @4V — V ®4 Q! such that

V(av) =aV(v)+o(da®av) (o-twisted left Leibniz rule)
/" Bimodule connections lift to tensor products:
Given (V,0) on V and (V',0’) on V', then
V= (idy ®40") (V@aidy) +idy @4V : VoV — VeV 040!
o= (idv XA 0/) (0’ XA idvl) Ot QRaV R4 vV — V®&a v/ XA Ot
defines bimodule connection (V,5) on V @4 V.

% Bimodule connections form an affine space over sHom4(V,V ® 4 Ql).

~»  such spaces are in general very small!
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aHom 4 (V, W) is very small

o For simplicity, consider free A-bimodules V' = A™ and W = A™.

¢ Right A-module homomorphisms are A-valued matrices
Homa(V,W) =2 A™" 3L : (v)}, ZleUz m

¢ Such L’s are A-bimodule homomorphisms iff all entries are central, i.e.
AHOIDA(‘/, W) = Z(A)mxn

o Example: Let A = Clz®,py]/(2"py — ppa® — i 6%) be 2k-dim. Moyal-Weyl
algebra with standard differential calculus Q' 2 A%* 5 w, dz® 4+ n® dpy.
The center is Z(A) = C, hence:

I Bimodule connections on V' = A" are affine space over the finite-dimensional
2
vector space aHoma(V,V ®4 Q') = C?*n

© That’s too rigid, in particular for applications to NC field and gravity theories.
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How can we solve or avoid this issue?
@ For generic NC algebras A, the concept of bimodule connections is what is
needed for liftings to tensor products [Bresser,Miiller-Hoissen,Dimakis, Sitarz].

© 1 will show that for “special” NC algebras, one can loosen the concept of
bimodule connections and still obtains liftings to tensor products.

o Let me give a first hint what | mean by “special” by an example:
— Consider again the Moyal-Weyl algebra A = (C[a:,p]/(xp —px — 1)
— The product 1 : A® A — A is clearly noncommutative
[a,b] = ab—ba = (u— poflip)(a®b) #0

when we use flip: A A—- ARA, a®b— bR a.

— However, using the nontrivial braiding
TTARA—3ARA, a®@br— (0= %Bh)y g 4
one finds that
[a,b]; =(u—por)(a®b) =0 = braided commutative!
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Doing algebra in braided monoidal categories
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Recap: Monoidal categories and monoid objects

© A monoidal category is the following data:
a category C,

a functor ® : C x C' — C (tensor product),
an object I € C' (unit object),

— natural isomorphisms (associator and left/right unitor)

~

a:(c1®ec)®c3 2 1 ®(c2®e3) , A:l®ec X c, p:c®I 2 ¢
satisfying the pentagon and triangle identities.

o Internal to monoidal categories, one can talk about monoids:

A monoid (or algebra) in C' is an object A € C' together with C-morphisms
p:A®A— A (product) and 1 : I — A (unit) satisfying

A®A A0 (A0 A) S Ag A 40488 Ag
A9 A)® A AR (A0 A) L% An A TOAY S A0 A AnT

u@:‘dé ., , éﬂA \ Lo

14

Ex: Monoids in Veck are associative and unital K-algebras.
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Braided monoidal categories

o A braided monoidal category is a monoidal cat C' with nat. iso (braiding)
T:C1R®C = R0
satisfying the hexagon identities. (If 72 = id, symmetric monoidal category.)

© This allows us to talk about braided commutative monoids/algebras:

A monoid (A, u,n) in Cis called braided commutative if the product is
compatible with the braiding, i.e.

AA— S AQA

Sy

Rem: | like to interpret braided commutative monoids (A, u,n) as algebras where
the commutation relations are dictated by 7.

~ cf. Giovanni Landi's talk!
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Bimodule objects

o Let C monoidal category and (A, u,77) monoid in C.

o An A-bimodule in C'is an object V € C' together with C-morphisms
1:A®V — V (left action) and r : V. ® A — V (right action) satisfying the
obvious compatibilities.

o If C' has coequalizers, we can equip the category 4C'4 of A-bimodules in C
with a monoidal structure where 14 = A and ® 4 is given by

r®id

_— o 7
(VoA W VW ——— Vs W
(id®l)oa

o If C'is braided monoidal category and A braided commutative monoid, we
call V e oCy4 symmetric iff

VA—— S AQV and AQV —— VA

Syt Sy

Prop: The braiding on C descends to a braiding on the monoidal category ,C%™.
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Examples from quasi-triangular Hopf algebras

o Let (H, R) be a quasi-triangular Hopf algebra.

o A left H-module is a vector space V with H-action>: H®V = V.

o Tensor products of left H-modules defines monoidal category (7.7 ,®,K).

NB: Associators and unitors are trivial, hence they will be suppressed.

o Using R-matrix R = RV ® R® ¢ H ® H, we obtain braiding

T VOW —>WeV, vow— RPswe RV

o Braided commutative monoids (A, i1,n) in #.# are H-module algebras

Ex:

satisfying the commutation relations ab = (R® > b) (R > a).

The Moyal-Weyl algebra, NC torus, Connes-Landi sphere, etc., are braided
commutative for Hopf algebra H = UR?* with R = exp(i ©'™t; @ t,,).

(More fancy example, see blackboard!)

o Associated to each braided commutative monoid (A, i, 1) in #.4 is a

NB

braided monoidal category (4.#3™,®4, A, 74) of symmetric A-bimodules.

: For simplicity, | will focus for the rest of this talk on these examples!
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Braided derivations and differential calculi
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Ordinary vs. braided derivations: A first look

o An ordinary derivation on a braided commutative monoid A in . is an
H_zf-morphism X : A — A satisfying the Leibniz rule

X(ab) = X(a)b+ a X(b)

o A braided derivation on A is a linear map X : A — A (not necessarily
H-equivariant!) satisfying the braided Leibniz rule

X(ab) = X(a)b+ (R®>a) (RV > X)(b)
where the H-action on linear maps is via adjoint action
he X = (hay> ) o X o (S(he)> )
Prop: There is a linear isomorphism
{ordinary derivations on A} = {H-invariant braided derivations on A}

= There are many more braided derivations than ordinary ones! Hence, braided
derivations are more flexible for doing geometry on A.
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Categorical interpretation via internal homs

o H_# has internal homs ¢ : Homu 4 (Z @ V,W) = Homu_y(Z, hom(V, W))
o Explicitly: hom(V, W) € #.# is Homg (V, W) with adjoint H-action.

o From abstract non-sense, one obtains ¥ .Z-morphisms:

— Evaluation: ev : hom(V,W)@V — W
— Composition: e : hom(W, Z) ® hom(V, W) — hom(V, Z)

o Let us adjoin pt: A® A — Ato ((u) : A— end(A) and define the bracket
[+, ]=e—e07:end(A) ® end(A) — end(A).

o Braided derivations on A are those X € end(A) satisfying
X, ¢(w)(@)] = ¢(u)(ev(X @ a))
o Formally, der(A) € ¥4 is characterized by the equalizer in ¥ #
C([-,¢(w) (D

der(A) —— end(A) hom(A,end(A))
¢(¢(p)oev)
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Construction of Kahler-style differentials

o Similarly, one defines braided derivations der(A, V) valued in V € . .z3™
o One can show that der(A4,V) € #.#3™ v
(a-X)(b):==aX(®d) , (X -a)b):=X(RP>b)(RV>a)
o The functor der(A4, —) : .4™ — H.#77™ is representable via
der(A, —) = hom(Q!, )

where
— homa(V,W) € H.43™ is internal hom in & .2#5™;
(Right A-linear maps with adjoint H-action and suitable A-bimodule structure.)
- Q' =T/1? € §45™ where I' := ker(u: A® A — A) is H-module algebra.
(The differential on Q1 is the typicaloned: A - Q! a—»a®1-1®a.)

o Construct 2® as semifree braided graded-commutative DGA over Q!.

o Conclusion: Any braided commutative monoid A in . admits a canonical
differential calculus obtained from braided derivations.
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Connections and their lifts to tensor products
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Connections on f.#7™ via internal homs

o Wanted: “Carving out” space of connections on V from hom(V,V @4 Q).

o First observe that the right Leibniz rule V(va) = V(v)a +v ®a da is
equivalent to (with R~! = R @ R(?) inverse R-matrix)
V(av) — (R?>a) (R >V)(v) = RY o4 R > (da)
o Both sides are obtained from #_#-morphisms to internal homs:
— lhs == [-.¢()()] s hom(V,V ®4 Q') @ A — hom(V,V ®4 Q)

- ths :=(((id®d)or™") : A= hom(V,V ®a Q") is the adjoint of the
H(//—morphism (id®d) 0Tl AQV 5 V@4 O

o Define the object of connections con(V') € 1.7 by equalizer

Ihs o prq
%
con(V) —— hom(V,V ®a Q') xK hom (A, hom(V,V ®4 Q"))

rhs o pry

NB: Elements of con(V) are pairs (V,c) € hom(V,V ®4 Q') x K satisfying the
“continuous” right Leibniz rule

Viwa)=V@w)a+cv®y4da
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Construction of tensor product connections
o Question: Given V, V' € .#3™, (V,c¢) € con(V) and (V',¢') € con(V").
Can we construct a connectionon V ®4 V'?

¢ That’s indeed possible! To formalize our construction, we use:
— Tensor product: ® : hom(V, W) ® hom(X,Y) - hom(V @ X,W ®Y)

— Fiber product: con(V) xk con(V’) — con(V")

! L

COH(V) p—TK> K
Let V,V' € H.57™. There exists an #.#-morphisms (called sum of connections)
B : con(V) xg con(V') — con(V @4 V')
(V.0,(7,0) — (rs(V@1) +18V',c)

Moreover, the sum of connections is associative.
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Comparison to bimodule connections

How is our notion of connections different from bimodule connections?

Braided connections

Bimodule connections

V(wa)=V@)a+v®ada

V(wa)=V(v)a+v®ada

V(av) = (R%¥>a)(RVeV)(v)
+ROpye4 R (da)

V(av) = aV(v) + o(da ®a v)

VEV (v@4v) =723(V(v) @4 0)
+(RPpv) ®a (RV> V) (v)

VBV (v@4v') = ahs(V(v) @4 0)
+v®a V' (V)
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Further aspects of connections [Bares As Szabo: 1507.02792]

¢ To any connection (V,1) € con(V') one can assign its curvature
curv(V) € homa(V,V @4 Q?)
o The curvature behaves additively under sums of connections
curv(VE V') = ma3(curv(V) ® 1) + 1 ® curv(V')

o Interpreting internal homs hom4 (V, W) € Z.#3"™ as ‘homomorphism
bundles’, we also would like to induce connections on them:

Thm: Let V,W € T .#5™. There exists an _#-morphism
ade : con(W) xx con(V) — con(homy4(V, W))
Cor: Denote by VY :=hom(V, A) the dual module. Then there exists an

H 4 -morphism
(=)Y :con(V) — con(V")
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Towards NC vielbein gravity
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Deformation of vielbein gravity

o Let M be 4d spin mnf with trivial Dirac spinor bundle S = M x C* — M

<

Let H = UVec(M)p and R = Fy; F~! for some cocycle twist F’
o Twist deformation quantization constructs x-product on C*°(M) and
*-bimodule structure on I'*°(.S), such that

- A= (C>®(M), pr,nr) is braided commutative monoid in 7 .#;

-V =(T>(9),lr,rr) € L4, (Note that V =2 A% is free.)

NC vielbein gravity coupled to Dirac fields requires the following fields:
— Dirac and co-Dirac field: 1 € V and ¢ € V¥ = homa(V, A);
— Spin connection: (V,1) € con(V) such that V =d — 2w’ [ya7);
— Vielbein: E € enda (V) such that E = E® v,.

<

o Using our constructions, we can define Lagrangian for this NC field theory
L= tr(icurv(V)0E0E075 — (V) @4 -9 @4 VY (@) OEOEOEo'yg))

NB: The noncommutativity is in the composition and evaluation of internal homs!
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