The Stack of Yang-Mills Fields

Alexander Schenkel

School of Mathematical Sciences, University of Nottingham

UNITED KINGDOM · CHINA · MALAYSIA

Talk @ Modern Mathematics of Quantum Theory, University of York, 5–7 September 2017.

Based joint work with M. Benini and U. Schreiber [arXiv:1704.01378].

Outline

- 1. Generalized smooth spaces via sheaf categories
- 2. Homotopy theory of presheaves of groupoids and stacks
- 3. Stack of gauge fields on a manifold

4. Yang-Mills equation and stacky Cauchy problem

Generalized smooth spaces via sheaf categories

Functor of points

- Category of finite-dimensional manifolds Man
- \diamond "Test" $M \in \mathsf{Man}$ via smooth maps $V \to M$, e.g.
 - $V = \{*\}$ gives points $\{*\} \rightarrow M$
 - $V=\mathbb{R}$ gives smooth curves $\mathbb{R} \to M$
- \diamond **Technically:** Assign to $M \in \mathsf{Man}$ the presheaf (functor of points)

$$\underline{M} := C^{\infty}(-, M) : \mathsf{Man}^{\mathrm{op}} \longrightarrow \mathsf{Set}$$
 .

 $\underline{M}(V) = C^{\infty}(V, M)$ is called the set of V-points.

Crucial observation

By Yoneda lemma, $(-): \mathsf{Man} \to \mathsf{PSh}(\mathsf{Man})$ is fully faithful, i.e.

$$C^{\infty}(M, M') \cong \operatorname{Hom}_{\mathrm{PSh}(\mathsf{Man})}(\underline{M}, \underline{M'})$$

Hence, manifolds and their smooth maps can be described equivalently from the functor of points perspective!

Sheaves are better than presheaves!

 \diamond **Problem:** Given open cover $\{U_i \subseteq M\}$

! Solved by restricting to sheaf category $Sh(Man) \subseteq PSh(Man)$.

Def:
$$X: \mathsf{Man}^{\mathrm{op}} \to \mathsf{Set}$$
 is a sheaf if \forall open covers $\{U_i \subseteq M\}$

$$X(M) \stackrel{\cong}{\longrightarrow} \lim_{\mathsf{Set}} \Big(\prod_i X(U_i) \rightrightarrows \prod_{ij} X(U_{ij}) \rightrightarrows \prod_{ijk} X(U_{ijk}) \cdots \Big)$$

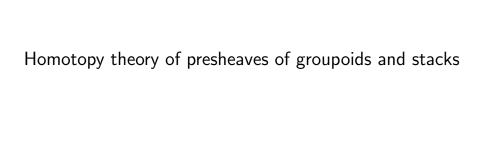
Generalized smooth spaces

We have a fully faithful embedding $\underline{(-)}: \mathsf{Man} \to \mathrm{Sh}(\mathsf{Man})$, i.e. we can equivalently describe manifolds and smooths maps within $\mathrm{Sh}(\mathsf{Man})$.

There are many sheaves $X \in \mathrm{Sh}(\mathsf{Man})$ that **do not** come from manifolds, i.e. $X \not\cong \underline{M}$ for any M. These may be called generalized smooth spaces.

Constructions with generalized smooth spaces

- \diamond All limits and colimits exist in Sh(Man). For example, fiber products $X \times_Z Y$ and quotient spaces X/G.
- \diamond All exponential objects (mapping spaces) exist in Sh(Man). For example, field space Map $(\underline{M},\underline{N})$ of σ -model: Map $(\underline{M},\underline{N})(V)\cong C^\infty(V\times M,N)$
- \diamond Differential forms on all $X \in \operatorname{Sh}(\mathsf{Man})$. Explicitly:
 - Classifying space $\Omega^p \in Sh(\mathsf{Man})$ given by $\Omega^p : M \mapsto \Omega^p(M)$.
 - Yoneda implies $\omega \in \Omega^p(M) \Leftrightarrow \omega : \underline{M} \to \Omega^p$ in $\mathrm{Sh}(\mathsf{Man})$.
 - Define p-form ω on $X : \Leftrightarrow \omega : X \to \Omega^p$ in $Sh(\mathsf{Man})$.
- Rem: 1.) Instead of $\operatorname{Sh}(\operatorname{Man})$ we can equivalently take $\operatorname{Sh}(\operatorname{Cart})$ over the full subcategory $\operatorname{Cart} \subseteq \operatorname{Man}$ given by all $U \cong \mathbb{R}^m$, for some $m \geq 0$. (The relevant covers in Cart are good open covers.)
 - 2.) These techniques are very useful to study non-linear classical field theories and their Poisson algebras. [Benini,AS:1602.00708] [Khavkine,Schreiber:1701.06238]



Groupoids

"Spaces" of gauge fields don't have sets but groupoids of points:

$$G\mathbf{Con}(M)(\{*\}) \,=\, \begin{cases} \mathsf{Obj:} & \mathsf{principal}\ G\text{-bundles over}\ M\ \mathsf{with\ connection}\ (A,P)\\ \mathsf{Mor:} & \mathsf{gauge\ transformations}\ h: (A,P) \to (A',P') \end{cases}$$

 \diamond **New feature:** Two groupoids \mathcal{G} and \mathcal{H} are "the same" not only when isomorphic, but also when equivalent (as categories)!

Ex: $X \times G \to X$ free *G*-action on set *X*, then

$$[\,\cdot\,]\,:\,X//G\,=\,\begin{cases} \mathsf{Obj:}&x\in X\\ \mathsf{Mor:}&x\stackrel{g}{\longrightarrow}x\,g \end{cases} \quad\longrightarrow\quad X/G\,=\,\begin{cases} \mathsf{Obj:}&[x]\in X/G\\ \mathsf{Mor:}&[x]\stackrel{\mathrm{id}}{\longrightarrow}[x] \end{cases}$$

is equivalence but not isomorphism.

- \diamond Equip category Grpd with a model structure: A morphism $F:\mathcal{G}
 ightarrow \mathcal{H}$ is a
 - weak equivalence if fully faithful and essentially surjective;
 - fibration if $\forall x \in \mathcal{G}$ and $h: F(x) \to y$ in \mathcal{H} , $\exists g: x \to x'$ in \mathcal{G} s.t. F(g) = h;
 - cofibration if injective on objects.

Presheaves of groupoids and stacks

- \diamond "Smooth" groupoids := Presheaves of groupoids H := PSh(Cart, Grpd).
- \diamond For $X : \mathsf{Cart}^{\mathrm{op}} \to \mathsf{Grpd}$, we call X(V) the groupoid of V-points.
- ♦ [Hollander:math/0110247] constructed a model structure on H in which
 - $-f:X\to Y$ is weak equivalence iff iso of sheaves of homotopy groups;
 - $-X \in \mathsf{H}$ is fibrant object iff for all open covers $\{U_i \subseteq U\}$

$$X(U) \xrightarrow{\text{w.e.}} \operatorname{holim}_{\mathsf{Grpd}} \left(\prod_{i} X(U_i) \rightrightarrows \prod_{ij} X(U_{ij}) \rightrightarrows \prod_{ijk} X(U_{ijk}) \cdots \right)$$

That is a homotopical generalization of the sheaf condition!

Def: A stack is a fibrant object $X \in H$.

NB: [Hollander:math/0110247] proved that this description of stacks is equivalent to the ones as fibered categories or lax presheaves of groupoids.

Examples of stacks (relevant for gauge theory)

- \diamond Every manifold M defines a stack $\underline{M} := C^{\infty}(-, M) : \mathsf{Cart}^{\mathrm{op}} \to \mathsf{Set} \hookrightarrow \mathsf{Grpd}.$
- \diamond Let G be Lie group. Classifying stack of principal G-bundles:

$$\mathrm{B}G(V) \,=\, \begin{cases} \mathrm{Obj:} & * \\ \mathrm{Mor:} & C^{\infty}(V,G) \ni g : * \longrightarrow * \end{cases}$$

♦ Classifying stack of principal *G*-bundles with connections:

$$\mathrm{B}G_{\mathrm{con}}(V) \,=\, \begin{cases} \mathrm{Obj:} & A \in \Omega^1(V,\mathfrak{g}) \\ \mathrm{Mor:} & C^{\infty}(V,G) \ni g : A \longrightarrow A \triangleleft g = g^{-1}Ag + g^{-1}\mathrm{d}g \end{cases}$$

 \diamond Classifying stack of $\operatorname{ad}(G)$ -valued differential forms:

$$\Omega_{\mathfrak{g}}^{p}(V) \ = \ \begin{cases} \mathsf{Obj:} \ \ \omega \in \Omega^{p}(V,\mathfrak{g}) \\ \mathsf{Mor:} \ \ C^{\infty}(V,G) \ni g : \omega \longrightarrow \mathrm{ad}_{g}(\omega) = g^{-1}\omega g \end{cases}$$

NB: Curvature stack map $F: \mathrm{B}G_{\mathrm{con}} \to \Omega^2_{\mathfrak{g}}$:

$$\begin{cases} A &\longmapsto F(A) = \mathrm{d}A + \frac{1}{2}[A,A] \\ \left(g:A \to A \triangleleft g\right) &\longmapsto \left(g:F(A) \to \mathrm{ad}_g(F(A))\right) \end{cases}$$

Homotopical constructions with stacks

'Ordinary" constructions **do not** preserve weak equivalences, e.g. in topology: $\operatorname{colim}_{\mathsf{Top}}(\mathbb{D}^n \leftarrow \mathbb{S}^{n-1} \to \mathbb{D}^n) \cong \mathbb{S}^n \not\cong \{*\} \cong \operatorname{colim}_{\mathsf{Top}}(\{*\} \leftarrow \mathbb{S}^{n-1} \to \{*\})$

- Model category theory provides tools to construct derived functors.
- $\Rightarrow \text{ Homotopy fiber product of stacks } X \times_Z^h Y := \operatorname{holim}_{\mathsf{H}}(X \xrightarrow{f} Z \xleftarrow{g} Y)$

$$\big(X \times_Z^{\color{red} h} Y \big) (V) \, = \, \begin{cases} \operatorname{Obj:} \ f(x) \xrightarrow{ k} g(y) \ \operatorname{in} \, Z(V) \\ \operatorname{Mor:} \ f(x) \xrightarrow{ f(h)} f(x') \ \operatorname{in} \, Z(V) \\ \text{$k \downarrow$} \ & \downarrow k' \\ g(y) \xrightarrow{ g(l)} g(l') \end{cases}$$

 \diamond Derived mapping stacks $\operatorname{Map}^h(X,Y) := \operatorname{Map}(Q(X),Y)$ for $Y \in \mathsf{H}$ stack. Q is cofibrant replacement and Map is exponential object in H

$$\mathrm{Map}(Z,Y)(V) \,=\, \begin{cases} \mathsf{Obj:} \ F: \underline{V} \times Z \longrightarrow Y \ \text{ in H} \\ \mathsf{Mor:} \ H: \underline{V} \times Z \times \Delta^1 \longrightarrow Y \ \text{ in H} \end{cases}$$

Stack of gauge fields on a manifold

Mapping stack: Ordinary vs. derived

- \diamond Wanted: Stack of principal G-bundles with connections on manifold M.
- \checkmark Ordinary mapping stack $Map(\underline{M}, BG_{con})$ has $\{*\}$ -points

$$\mathrm{Map}(\underline{M},\mathrm{B}G_{\mathrm{con}})(\{*\}) \;=\; \begin{cases} \mathsf{Obj:} \;\; A \in \Omega^1(M,\mathfrak{g}) \\ \mathsf{Mor:} \;\; C^\infty(M,G) \ni g: A \longrightarrow A \triangleleft g \end{cases}$$

Only trivial principal G-bundles! The problem is that \underline{M} is not cofibrant!

Lem: Let $\{U_i \subseteq M\}$ be any open cover with all $U_i \cong \mathbb{R}^m$. Then

is a cofibrant replacement of \underline{M} in H.

 \diamond Derived mapping stack $\operatorname{Map}^h(\underline{M},\operatorname{B}G_{\operatorname{con}})$ has $\{*\}$ -points

$$\mathrm{Map}^{\pmb{h}}\big(\underline{M},\mathrm{B}G_{\mathrm{con}}\big)\big(\big\{*\big\}\big) \;=\; \begin{cases} \mathsf{Obj:} & \big(\{A_i \in \Omega^1(U_i,\mathfrak{g})\}, \{g_{ij} \in C^\infty(U_{ij},G)\}\big) \\ & \mathsf{s.t.} \;\; A_i \lhd g_{ij} = A_j \;\; \& \;\; g_{ij}\,g_{jk} = g_{ik} \\ \mathsf{Mor:} & \big\{h_i \in C^\infty(U_i,G)\} : \big(\{A_i\}, \{g_{ij}\}\big) \longrightarrow \big(\{A_i'\}, \{g_{ij}'\}\big) \\ & \mathsf{s.t.} \;\; A_i \lhd h_i = A_i' \;\; \& \;\; g_{ij}h_j = h_ig_{ij}' \end{cases}$$

Differential concretification: Motivation

 \diamond The groupoid of V-points of $\mathrm{Map}^{\pmb{h}}(\underline{M},\mathrm{B}G_{\mathrm{con}})$ is

```
\begin{cases} \mbox{Obj:} & \left(\{A_i \in \Omega^1(\mbox{$V$} \times U_i, \mathfrak{g})\}, \{g_{ij} \in C^\infty(\mbox{$V$} \times U_{ij}, G)\}\right) \ + \mbox{conditions} \\ \mbox{Mor:} & \left\{h_i \in C^\infty(\mbox{$V$} \times U_i, G)\} : \left(\{A_i\}, \{g_{ij}\}\right) \ \longrightarrow \left(\{A_i'\}, \{g_{ij}'\}\right) \ + \mbox{conditions} \end{cases}
```

which is equivalent to the groupoid of bundles with connections on $V \times M$.

- $\begin{tabular}{ll} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$
- \diamond We have to "kill" the bundles and connections on the test spaces V, which isn't that easy to do in a homotopically well-defined way!
- ♦ **Basic ingredient:** Quillen adjunction $\flat : H \rightleftharpoons H : \sharp$ such that
 - $\flat X(V) = X(\{*\})$ "discretizes" stacks;
 - $\sharp X(V) \cong \mathsf{Grpd}_{\mathsf{H}}(\underline{V},\sharp X) \cong \mathsf{Grpd}_{\mathsf{H}}(\flat \underline{V},X)$ "evaluates" stacks on discretized test spaces. [cf. Schreiber, cohesive higher topoi]
- **NB:** $\sharp \operatorname{Map}^h(\underline{M}, \operatorname{B}G_{\operatorname{con}})$ has as V-points discretely V-parametrized families of bundles with connections on M, without any smoothness requirement.

Differential concretification: Construction

- ♦ The following concretification construction corrects (for the case of 1-stacks) a previous erroneous attempt by [Fiorenza,Rogers,Schreiber:1304.0236].
- \diamond **Basic idea:** Start with stack of discretely parametrized families $\sharp \mathrm{Map}^h(\underline{M},\mathrm{B}G_{\mathrm{con}})$ and recover in a 2-step procedure
 - 1.) smoothly parametrized families of gauge transformations, and
 - 2.) smoothly parametrized families of bundles with connections.
- 1.) Homotopy fiber product $P^h \in H$ of

$$\sharp \operatorname{Map}^{\pmb{h}}(\underline{M},\operatorname{B}G_{\operatorname{con}}) \stackrel{\sharp \operatorname{forget}}{-\!\!\!-\!\!\!-\!\!\!\!-} \sharp \operatorname{Map}^{\pmb{h}}(\underline{M},\operatorname{B}G) \xleftarrow{\operatorname{canonical}} \operatorname{Map}^{\pmb{h}}(\underline{M},\operatorname{B}G)$$

2.) 1-image factorization (fibrant replacement in truncation of H/P^h)

$$G\mathbf{Con}(M) := \mathrm{Im}_1(\mathrm{Map}^h(\underline{M}, \mathrm{B}G_{\mathrm{con}}) \longrightarrow P^h)$$

Prop: The groupoid of V-points of $G\mathbf{Con}(M)$ describes smoothly V-parametrized bundles with connections on M. Explicitly:

$$\begin{cases} \text{Obj:} & \left(\{A_i \in \Omega^{\mathbf{0},1}(V \times U_i,\mathfrak{g})\}, \{g_{ij} \in C^{\infty}(V \times U_{ij},G)\}\right) \text{ } + \text{conditions (vertical)} \\ \text{Mor:} & \left\{h_i \in C^{\infty}(V \times U_i,G)\} : \left(\{A_i\}, \{g_{ij}\}\right) \longrightarrow \left(\{A_i'\}, \{g_{ij}'\}\right) \text{ } + \text{conditions (vertical)} \end{cases}$$

Alexander Schenkel The Stack of Yang-Mills Fields York 2017 12 / 14

Yang-Mills equation and stacky Cauchy problem

Yang-Mills stack

- \diamond Let M be Lorentzian manifold. Relevant stacks for Yang-Mills theory:
 - $G\mathbf{Con}(M)$ is concretification of $\mathrm{Map}^h(\underline{M},\mathrm{B}G_{\mathrm{con}})$. Smoothly parametrized bundles with connections $(\mathbf{A},\mathbf{P})=(\{A_i\},\{g_{ij}\})$ on M.
 - $\Omega_{\mathfrak{g}}^p(M)$ is concretification of $\operatorname{Map}^h(\underline{M},\Omega_{\mathfrak{g}}^p)$. Smoothly parametrized bundles with p-form valued sections of adjoint bundle (ω,\mathbf{P}) on M.
 - $G\mathbf{Bun}(M) := \mathrm{Map}^{\mathbf{h}}(\underline{M}, \mathrm{B}G)$. Smoothly parametrized bundles \mathbf{P} on M.
- Relevant stack morphisms:
 - $-\mathbf{0}_M: G\mathbf{Bun}(M) o \mathbf{\Omega}^p_{\mathfrak{g}}(M)\,, \ \mathbf{P} \mapsto (\mathbf{0},\mathbf{P})$ assigns zero-sections.
 - $\mathbf{YM}_M : G\mathbf{Con}(M) \to \mathbf{\Omega}^1_{\mathfrak{g}}(M)$, $(\mathbf{A}, \mathbf{P}) \mapsto (\{\delta_{A_i}^{\mathrm{vert}} F^{\mathrm{vert}}(A_i)\}, \{g_{ij}\})$ is Yang-Mills operator.

Def: The Yang-Mills stack $G\mathbf{Sol}(M)$ is the homotopy fiber product of

$$G\mathbf{Con}(M) \ \xrightarrow{\mathbf{YM}_M} \ \mathbf{\Omega}^1_{\mathfrak{g}}(M) \ \xleftarrow{\mathbf{0}_M} \ G\mathbf{Bun}(M)$$

Prop: The groupoid of V-points describes smoothly V-parametrized solutions of the Yang-Mills equation. Explicitly: (\mathbf{A},\mathbf{P}) s.t. $\delta_{A_i}^{\mathrm{vert}}F^{\mathrm{vert}}(A_i)=0$.

Stacky Cauchy problem

 \diamond Given Cauchy surface $\Sigma \subseteq M$, there exists map of stacks $\mathrm{data}_{\Sigma}: G\mathbf{Sol}(M) \to G\mathbf{Data}(\Sigma)$ which assigns initial data.

Def: The stacky Cauchy problem is well-posed if $data_{\Sigma}$ is a weak equivalence.

Theorem [Benini, AS, Schreiber]

The stacky Yang-Mills Cauchy problem is well-posed if and only if the following hold true, for all $V \in \mathsf{Cart}$:

- 1. For all $(\mathbf{A}^{\Sigma}, \mathbf{E}, \mathbf{P}^{\Sigma})$ in $G\mathbf{Data}(\Sigma)(V)$, there exists (\mathbf{A}, \mathbf{P}) in $G\mathbf{Sol}(M)(V)$ and iso $\mathbf{h}^{\Sigma} : \mathrm{data}_{\Sigma}(\mathbf{A}, \mathbf{P}) \to (\mathbf{A}^{\Sigma}, \mathbf{E}, \mathbf{P}^{\Sigma})$ in $G\mathbf{Data}(\Sigma)(V)$.
- 2. For any other iso $\mathbf{h}'^{\Sigma}: \mathrm{data}_{\Sigma}(\mathbf{A}',\mathbf{P}') \to (\mathbf{A}^{\Sigma},\mathbf{E},\mathbf{P}^{\Sigma})$ in $G\mathbf{Data}(\Sigma)(V)$, there exists unique iso $\mathbf{h}: (\mathbf{A},\mathbf{P}) \to (\mathbf{A}',\mathbf{P}')$ in $G\mathbf{Sol}(M)(V)$, such that $\mathbf{h}'^{\Sigma} \circ \mathrm{data}_{\Sigma}(\mathbf{h}) = \mathbf{h}^{\Sigma}$.
 - ! Interesting smoothly V-parametrized Cauchy problems! To the best of my knowledge, results only known for $V = \{*\}$ [Chrusciel, Shatah; Choquet-Bruhat].