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Motivation

� QFT is one of the cornerstones of theoretical/mathematical physics with
many applications to particle physics, solid state physics, cosmology, . . .

� For a deeper understanding one has to address the question “What is a
QFT?”, i.e. we have to develop mathematical axioms for QFT.

� Prominent examples are:

– Atiyah-Segal topological/conformal QFT (formalizes the Schrödinger picture)

! Had a strong impact on pure mathematics, because TQFTs can be used to
study invariants of manifolds.

– Haag-Kastler local algebraic QFT (formalizes the Heisenberg picture)

! Captures essential aspects of physically relevant QFTs, such as local d.o.f. and
compatibility with the causal structure on Minkowski spacetime.

– Locally covariant QFT = algebraic QFT + Lorentz geometry

! Captures essential physical aspects of general relativity (geometry and causality
on Lorentz manifolds). It is able to describe local and topological d.o.f.!

� Any axiomatic framework is as good as its examples! My goal is to study
carefully the question: How well does gauge theory fit into LCQFT?
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Quick introduction to locally covariant QFT
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Basic physical idea

Locally covariant QFT is obtained by combining quantum theory with certain
aspects of classical general relativity.

� A spacetime is a globally hyperbolic Lorentz manifold M .

As a first step, we shall neglect dynamical aspects of gravity (gravitons) and
backreaction, so a QFT lives on a spacetime but it does not influence it.

(I) It is a priori not clear in which spacetime M we live, hence a QFT should be
democratic and treat all of them on the same footing.

(II) In quantum theory, observables which can be measured in experiments are
described by an abstract ∗-algebra A (sometimes assumed to be C∗).

� Combining (I) + (II): A QFT should be a mapping

A :
{

all spacetimes
}
−→

{
all ∗-algebras

}
,

M 7−→ A(M) = “QFT observables in M”

NB: This assignment is too arbitrary! In particular, for a sub-spacetime N ⊆M ,
the algebras A(N) and A(M) can be completely different.

⇒ More structure is needed!
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The role of category theory

� Recall that a category C is a class of objects Ob(C) together with a set of
morphisms HomC(C,C

′), for any pair of objects C,C ′.

Morphisms can be composed in an associative way via a composition map
◦ : HomC(C′, C′′)×HomC(C,C′)→ HomC(C,C′′) and there are identity
morphisms idC ∈ HomC(C,C).

Ex: – The category of spacetimes Loc has as objects all globally hyperbolic Lorentz
manifolds (oriented, time-oriented and of fixed dimension m) and as
morphisms all causal isometric open embeddings f : M →M ′.

– The category of algebras Alg has as objects all ∗-algebras and as morphisms
all ∗-algebra homomorphisms κ : A→ A′.

! Notice that sub-spacetime relations N ⊆M are encoded as morphisms
ιM,N : N →M in Loc.

� We can improve our definition of a QFT by demanding it to be a functor

A : Loc −→ Alg .

From this we get for any spacetime M an algebra A(M) and for any
spacetime embedding f :M →M ′ an algebra map A(f) : A(M)→ A(M ′).
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Brunetti-Fredenhagen-Verch axioms

� Not any functor A : Loc→ Alg will describe a physically reasonable QFT, so
one has to impose additional axioms!

� The original BFV-axioms are:

(L) Locality axiom: For any Loc-morphism f : M →M ′, the Alg-morphism
A(f) : A(M)→ A(M ′) is monic (i.e. injective).

(C) Causality axiom: For any Loc-diagram M1
f1−→M

f2←−M2 such that the
images of f1 and f2 are causally disjoint, the commutator

[− , − ]A(M) ◦
(
A(f1)⊗ A(f2)

)
: A(M1)⊗ A(M2) −→ A(M)

is zero.

(T) Time-slice axiom: For any Loc-morphism f : M →M ′ such that the image
contains a Cauchy surface of M ′, the Alg-morphism A(f) is isomorphism.

Ex: � Quantized Klein-Gordon theory (−� +m2 + ξR)φ = 0 [BFV,. . . ].

� Formal interacting (scalar) QFTs [Brunetti,Fredenhagen,Hollands,Rejzner,. . . ].

� After slight modifications, also free quantized Dirac theory [Sanders,. . . ].

E Gauge theories, even the Abelian ones. This is bad! Why that?
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The geometry of gauge theories
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Bundles, gauge fields, and all that

� Gauge theory was born by globalizing and generalizing Maxwell’s theory of
electromagnetism.

� As a first step, we choose a structure group G, which in Maxwell’s theory is
G = T = U(1) and in particle physics some product with SU(n)’s.

� A gauge field configuration on a manifold M is a pair A = (P, ω), where

P
π−→M is a principal G-bundle over M and ω a connection on P .

NB: – The bundle P describes the topological sector, e.g. magnetic monopole charge
for G = T or the instanton sector for G = SU(n).

– The connections on P describe fluctuations around the topological sector,
e.g. photons for G = T or gluons for G = SU(3).

� A gauge transformation is an arrow g : A → A′ given by a vertical principal
G-bundle isomorphism g : P → P ′ such that g∗(ω′) = ω under pull-back.

NB: – If M ' Rm, then all bundles are trivial P 'M ×G and a gauge field
configuration is simply an element A ∈ Ω1(M, g) (called gauge potential).

– In this case gauge transformations reduce to the usual well-known formula
A′ = g−1A g + g−1 dg, where g ∈ C∞(M,G).
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Gauge orbit spaces (a.k.a. coarse moduli spaces)

� I will now follow the (too naive) folklore that ‘only gauge classes matter’.

� Mathematically, this is done by forming the gauge orbit space

ConfG(M) :=
{

all gauge fields A on M
}/
∼ ,

where the quotient is by all gauge transformations.

� For a general structure group G, the geometric structure of ConfG(M) is
complicated, so let me fix in the following G = T, i.e. Abelian gauge theory.

� Ĥ2(M) := ConfT(M) is Abelian group and we have group homomorphisms:

– Curvature/field strength: curv : Ĥ2(M)→ Ω2(M)

– Characteristic class/magnetic charge: char : Ĥ2(M)→ H2(M,Z)

NB: Chern-Weil theory: De Rham class of curv(A) ∈ Ω2(M) is equal to char(A)
(modulo torsion). Hence, we have a commutative diagram

Ĥ2(M)

char
��

curv // Ω2
Z(M)

[− ]dR��

H2(M,Z) // H2
free(M,Z)
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A fancy diagram of exact sequences

� Studying carefully further aspects of the gauge orbit space one finds that our
small diagram can be extended to the diagram of exact sequences (∗ = 2):

0

��

0

��

0

��

0 // H
∗−1(M,R)

H∗−1
free

(M,Z)

��

// Ω
∗−1(M)

Ω∗−1
Z (M)

ι
��

d // dΩ∗−1(M) //

��

0

0 // H∗−1(M,T)

��

κ // Ĥ∗(M)

char
��

curv // Ω∗Z(M)

��

// 0

0 // H∗tor(M,Z)

��

// H∗(M,Z)

��

// H∗free(M,Z)

��

// 0

0 0 0

� Physical interpretation:

– Gauge classes of connections on trivial bundle

– Gauge classes of flat connections

– Characteristic classes/magnetic charges

– Curvatures/field strengths
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Quick look at abstract differential cohomology

Def: A differential cohomology theory is a functor Ĥ∗ : Manop → AbZ to Z-graded
Abelian groups together with four natural transformations (curv, char, ι, κ)
that fits into the natural diagram of exact sequences on the previous slide.

Thm: [Simons,Sullivan; Bär,Becker] Differential cohomology theories exist (e.g.
Cheeger-Simons) and are unique up to a unique natural isomorphism.

Prop: (The geometry of differential cohomology) [Becker,AS,Szabo]

(i) A differential cohomology theory can be promoted to a functor

Ĥ∗ : Manop → FrAbZ to Z-graded Abelian Frechét-Lie groups, such that the
natural diagram of exact sequences becomes a diagram in FrAbZ.

(ii) Isomorphism types: Ĥk(M) ' T bk−1 ×Hk(M,Z)× dΩk−1(M), where bk−1

is the k−1-th Betti number of M .

Rem: 1. Physically, the factor T bk−1 describes the Aharonov-Bohm phases, Hk(M,Z)
the magnetic charges and dΩk−1(M) the linear field strength perturbations.

2. Differential cohomology is interesting for different degrees:

k = 1 σ-model with target space T
k = 2 Abelian T-gauge theory

k ≥ 3 Higher Abelian gauge theories on k − 2-gerbes (important for string theory)
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Abelian quantum Yang-Mills theory:
Construction, properties and problems
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Construction of Abelian quantum Yang-Mills theory

� The quantization of differential cohomology is rather technical, so I can only
give a sketch. Details are available in my paper with Becker and Szabo.

1. Take a differential cohomology theory Ĥ∗ : Manop → AbZ. Fix some degree
k ≥ 1 and induce Ĥk : Locop → Ab to the spacetime category Loc.

2. On Loc we have a natural equation of motion, namely Maxwell’s equation
MW := δ ◦ curv : Ĥk ⇒ Ωk−1 with codifferential δ : Ωk ⇒ Ωk−1.

3. Characterize the solution groups Solk := Ker(MW), which turns out to be a

subfunctor of Ĥk that takes values in Abelian Frechét-Lie groups and fits into
a nice diagram of exact sequences.

4. Use Peierls’ method to obtain from Maxwell’s Lagrangian a natural
Poisson-Frechét manifold structure on the solution groups Solk.

5. Take as classical observables the Poisson ∗-algebras generated by smooth
group characters on Solk (smooth Pontryagin duality).

6. Quantize these Poisson ∗-algebras to C∗-algebras by using techniques from
CCR-quantization of presymplectic Abelian groups.

Thm: [Becker,AS,Szabo]

For any k ≥ 1, the above construction yields a functor Ak : Loc→ C∗Alg,
which satisfies the causality and time-slice axiom of the BFV-axioms.
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What about the locality axiom?

Thm: [Becker,AS,Szabo; earlier results by Benini,Dappiaggi,Hack,AS]

(a) The functor Ak : Loc→ C∗Alg has a subfunctor of the form

Aktop := CCR ◦
(
Hk(− ,Z)∗ ⊕Hm−k(− ,R)∗

)
: Loc −→ C∗Alg .

(b) For any Loc-morphism f : M →M ′ the following are equivalent:

1. Ak(f) : Ak(M)→ Ak(M ′) is monic.

2. f∗ : Hk(M,Z)∗ ⊕Hm−k(M,R)∗ → Hk(M ′,Z)∗ ⊕Hm−k(M ′,R)∗ is monic.

(c) Unless (m, k) = (2, 1), the functor Ak violates the locality axiom.

� Physical interpretation:

(a) Aktop is a topological QFT, measuring the topological content of Abelian
Yang-Mills theory given by electric charges and magnetic charges.

(b) + (c) It is precisely due to topological charges that the locality axiom is violated!

This violation can be understood as a topological obstruction for extending
‘charged’ gauge field configurations from M to M ′. E.g.

(i) For nontrivial electric charge Qel 6= 0, the static gauge potential A ∼ Qel/r on
R3 \ {0} does not extend to a solution of Maxwell’s equation on R3+1.

(ii) For nontrivial magnetic charge (i.e. Chern class) Qmag 6= 0, the T-bundle
P → R3 \ {0} does not extend to R3.

[For experts: The differential cohomology presheaf is not flabby (or at least c-soft).]
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Local-to-global properties

� Conceptual problem: Due to violations of the locality axiom we can not
effectively compare and relate observables via Ak(f) : Ak(M)→ Ak(M ′)
whenever M is topologically non-trivial!

? Can we compare local and global physics in a different way?

! Introduce gluing axiom! Heuristically:

For any M , the global observable algebra Ak(M) should be “determined by”
the local algebras Ak(Uα) in a suitable open cover {Uα →M}.

� There are (at least) two possible precise definitions:

– Additivity axiom: Ak(M) '
∨
α Ak(Uα) [studied in LCQFT by Fewster,Verch]

– Cosheaf axiom: Ak(M)
'←− colim

( ∐
α,β

Ak(Uαβ) ⇒
∐
α

Ak(Uα)
)

[stronger!]

Prop: For k ≥ 2, the functor Ak : Loc→ C∗Alg satisfies neither the cosheaf
nor the additivity axiom.

NB: – Physical interpretation: Gauge invariant observables can not be glued!

– This can be seen already for configurations: Gauge classes can not be glued!

– In mathematical terminology: Differential cohomology is not a sheaf and as a
consequence its quantization is not a cosheaf.
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Homotopy theory in gauge theories
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Why is gauge theory different to, say, scalar field theory?

� Scalar field configurations form a sheaf F := C∞(− ,R) : Manop → Sets,
i.e. for any open cover {Uα} of a manifold M we have the gluing law

F(M)
'−→ lim

(∏
α

F(Uα) ⇒
∏
α,β

F(Uαβ)
)

� Gauge orbit spaces do not form a sheaf, so there is no gluing law!

� If we DO NOT take orbit spaces, then gauge field configurations form a
stack, which is the same thing as a homotopy sheaf of groupoids [Hollander].

� A homotopy sheaf G : Manop → Gpds satisfies the “homotopy gluing law”

G(M)
∼−→ holim

(∏
α

G(Uα) ⇒
∏
α,β

G(Uαβ)→→→
∏
α,β,γ

G(Uαβγ)
→→→→ · · ·

)
NB: The “homotopy gluing law” is not as crazy as it looks like!

Already Dirac has used some variant of it to construct the Abelian magnetic
monopole by “gluing up to a gauge transformation”

Aβ |Uαβ −Aα|Uαβ = gαβ dg
−1
αβ , gβγ |Uαβγ g

−1
αγ |Uαβγ gαβ |Uαβγ = 1

homotopy sheaf = “gluing up to a gauge transformation”
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Configurations and observables in contractible manifolds

� The homotopy sheaf property suggest the following strategy:

1. Formulate gauge field configurations and observables in contractible manifolds.

2. Extend via homotopy (co)limits to all manifolds.

� On a contractible manifold M , the groupoid of gauge field configurations
may be described by the simplicial set

Ω1(M, g) C∞(M,G)× Ω1(M, g)oo
oo C∞(M,G)×2 × Ω1(M, g)oo

oo
oo

· · ·oo
oo
oo

oo

� Gauge field observables are then suitable functions on this simplicial set,
i.e. a cosimplicial algebra

O
(
Ω1(M, g)

) //
// O
(
C∞(M,G)× Ω1(M, g)

)
//
//
// O
(
C∞(M,G)×2 × Ω1(M, g)

) //
//
//

// · · ·

Rem: – For making a suitable choice of functions O one has to equip the
configurations with a simplicial (locally convex) manifold structure.

– Applying dual Dold-Kan, the cosimplicial algebra gives rise to a dg-algebra,
which can be ‘linearized’ via the van-Est map to the Chevalley-Eilenberg
dg-algebra corresponding to infinitesimal gauge transformations. This is the
starting point of the BRST/BV-formalism [Fredenhagen,Rejzner in LCQFT].

! Notice that our approach has the advantage that it describes finite gauge
transformations! (These are important for gluing!)
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Extension to generic manifolds

� On the previous slide we have seen that:

– gauge field configurations may be described by a functor C : Manop
c© → sSet.

– gauge field observables may be described by a functor O : Man c© → cAlg.

� Wanted: Extension of these functors to all manifolds by computing
homotopy (co)limits over suitable covers.

� Problem: It is really hard to compute explicitly these homotopy (co)limits!

� We [Benini,AS,Szabo] have tackled this problem and made explicit calculations
for Abelian gauge theory, which is much easier because there is a description
in terms of chain complexes of Abelian groups.

The details are technical, so I can not explain them here and refer to our recent preprint.

� Main results: Homotopy limits produce the correct global gauge field
configurations (i.e. differential cohomology in chain complex homology) and
homotopy colimits produce the correct global gauge field observables.

! This solves the problems which shown up in the ordinary universal algebra
(i.e. colimit) construction of [Dappiaggi,Lang; Fewster,Lang]!

(missing flat connections, violation of Dirac charge quantization condition, . . . )

A. Schenkel (Heriot-Watt University, Edinburgh) Gauge theories in LCQFT Talks in April 2015 16 / 18



Towards a new framework:
Homotopy locally covariant QFT
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A working definition of hoLCQFT

Def: A homotopy locally covariant QFT is a functor A : Loc→ X to some suitable
model category of ‘algebras’ (maybe dgAlg or scAlg) which satisfies:

(G) Homotopy cosheaf axiom: A is a homotopy cosheaf. (We can glue observables!)

(wL) Weak locality axiom: For any Loc-morphism f : M →M ′ such that M is
contractible, the morphism A(f) : A(M)→ A(M ′) is monic up to homotopy.

(C) Causality axiom: For any Loc-diagram M1
f1−→M

f2←−M2 such that the
images of f1 and f2 are causally disjoint, the commutator

[− , − ]A(M) ◦
(
A(f1)⊗ A(f2)

)
: A(M1)⊗ A(M2) −→ A(M)

is zero up to homotopy.

(T) Time-slice axiom: For any Cauchy Loc-morphism f : M →M ′, the morphism
A(f) : A(M)→ A(M ′) is an isomorphism up to homotopy.

NB: These structures have not yet been explored in detail, but they seem to be
essential for formulating gauge theories. Open problems/Future work:

– Give precise definition of hoLCQFT. (What do we mean by up to homotopy?)

– Is (Abelian) quantum Yang-Mills theory a hoLCQFT?

– Can we do interesting model-independent studies in hoLCQFT? (E.g. Relative
Cauchy evolution, automorphism groups, spin-statistics theorem, . . . )
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Concluding remarks
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Concluding remarks

� I hope that I could convince you that Abelian quantum Yang-Mills theory is
not yet as well understood as people always claim.

� In particular, there is a deep conflict between the mathematical structure of
gauge theories and the axiomatic framework of locally covariant QFT:

gauge theory + LCQFT = E

� The source of this problem is that ordinary LCQFT does not capture
important structural aspects of gauge theories (“stacky” geometry of
configurations spaces; homotopical algebra of observables; . . . ).

� Because of the immense relevance of gauge theories in physics and
mathematics, it is unavoidable for us to generalize our techniques of LCQFT
in order to make them compatible with gauge theories.

� Our proposed framework exactly goes in this direction:

homotopy theory + LCQFT = hoLCQFT
?
3 gauge theories
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