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Motivation

Part of our motivation comes from the following questions:

� Why doesn’t gauge theory fit into the axioms of LCQFT?

– Observation originally due to [Dappiaggi,Lang] for F -theory:

∃ f : M → N s.t. A(f) : A(M)→ A(N) not injective

– Physical explanation due to [Dappiaggi,Hack,Sanders] for A-theory:

“electric charges” mess up the locality axiom (see Ko Sanders’ talk)

– Mathematical explanation due to [Benini,Dappiaggi,Hack,AS] for ∇-theory:

QFT functor A has a purely topological subfunctor related to H2
0 ( · ;R)

� Is it only due to “electric charges” that locality is violated or do “magnetic
charges” behave similar?

– To answer this question we have to understand what physicists mean by
formulas like this:

“
∑

P∈{all T-bundles}

∫
Con(P )

D∇· · · ”

! Differential cohomology allows us to address these questions for Maxwell
theory and also its higher versions like connections on p-gerbes!
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What is differential cohomology?
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From bundle-connection pairs to differential cohomology I

� Degrees of freedom in Maxwell theory on a manifold M are pairs (P ,∇),
where P →M is hermitian line bundle and ∇ hermitian connection on P .

� The set Conf(M) := {(P,∇)} of all such pairs is an Abelian group

(P,∇) + (P ′,∇′) := (P ⊗ P ′,∇⊕∇′) .

� Gauge equivalence: (P,∇) ∼ (P ′,∇′) if ∃ f : P → P ′ bundle isomorphism
over idM preserving the connections.

� The gauge orbit space is then the quotient Ĥ2(M ;Z) := Conf(M)/ ∼,
which is also Abelian group.

� There are natural group epimorphisms:

– curv : Ĥ2(M ;Z)→ Ω2
Z(M) , [(P,∇)] 7→ − 1

2πi
R∇ (curvature)

– char : Ĥ2(M ;Z)→ H2(M ;Z) , [(P,∇)] 7→ c1(P ) (1st Chern class)

� These maps have kernels!

– ker(curv) = flat connections ' H1(M ;T)

– ker(char) = eqv. classes of conn. on trivial bundle ' Ω1(M)/Ω1
Z(M)
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From bundle-connection pairs to differential cohomology II

One finds that the gauge orbit space Ĥ2(M ;Z) fits into the following commuting
diagram with exact rows and columns:

0

��

0

��

0

��

0 // H
1(M ;R)

H1
free

(M ;Z)

��

// Ω
1(M)

Ω1
Z(M)

ι

��

d // dΩ1(M) //

��

0

0 // H1(M ;T)

��

κ // Ĥ2(M ;Z)

char

��

curv // Ω2
Z(M)

��

// 0

0 // H2
tor(M ;Z)

��

// H2(M ;Z)

��

// H2
free(M ;Z)

��

// 0

0 0 0

? Can we also make sense out of Ĥk(M ;Z) for k ∈ Z?

A. Schenkel (Heriot-Watt University, Edinburgh) Gauge theory and differential cohomology Talk @ AQFT14 5 / 16



Differential cohomology

Def: A differential cohomology theory is a contravariant functor

Ĥ∗( · ;Z) : Man→ AbZ together with nat. transformations (curv, char, ι, κ),
such that the following diagram commutes and has exact rows and columns:

0

��

0

��

0

��

0 // H
∗−1(M ;R)

H∗−1
free

(M ;Z)

��

// Ω
∗−1(M)

Ω∗−1
Z (M)

ι

��

d // dΩ∗−1(M) //

��

0

0 // H∗−1(M ;T)

��

κ // Ĥ∗(M ;Z)

char

��

curv // Ω∗Z(M)

��

// 0

0 // H∗tor(M ;Z)

��

// H∗(M ;Z)

��

// H∗free(M ;Z)

��

// 0

0 0 0

Thm: [Simons,Sullivan; Bär,Becker] Differential cohomology theories exist (e.g.
Cheeger-Simons theory) and are unique up to a unique natural isomorphism.
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Differential cohomology: Examples

� Degree k = 1: (σ-model with target space T)

– Ĥ1(M ;Z) ' C∞(M,T)

– curv(h) = 1
2πi

d log h = 1-form field strength

– char(h) = “winding number around the circle” ∈ H1(M ;Z)

� Degree k = 2: (Maxwell theory)

– Ĥ2(M ;Z) '
{

(bundle, connection)
}
/ ∼

– curv(h) = 2-form field strength

– char(h) = Chern class ∈ H2(M ;Z)

� Degree k = 3: (Higher Maxwell theory)

– Ĥ3(M ;Z) '
{

(gerbe, connection)
}
/ ∼

– curv(h) = 3-form field strength

– char(h) = Dixmier-Douady class ∈ H3(M ;Z)

� Degree k > 3: (Higherk−2 Maxwell theory) . . . . . .
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Generalized Maxwell maps and solution subgroups
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Maxwell maps and solutions on the category Locm

Def: Let δ be the codifferential. The generalized Maxwell map is the natural
transformation MW := δ ◦ curv : Ĥk( · ;Z)⇒ Ωk−1( · ). The solution

subgroups are the kernels Ŝol
k
(M) :=

{
h ∈ Ĥk(M ;Z) : MW(h) = 0

}
.

Thm: Ŝol
k
( · ) is a subfunctor of Ĥk( · ;Z) and the following diagram commutes

and has exact rows and columns:

Remark 3.5. For any Loc

m-morphism f : M ! N we shall denote the restriction of bHk(f ;Z)
to d

Sol

k(N) by d

Sol

k(f) : dSol

k(N) ! d

Sol

k(M).

The next goal is to restrict the diagram (2.12) to the solution subgroup d

Sol

k(M) ✓
bHk(M ;Z). Let us denote by ⌦k

Z, �(M) the Abelian group of closed and coclosed k-forms
with integral periods. From the definition of the solution subgroups (3.3) it is clear that the
middle horizontal sequence in (2.12) restricts to the exact sequence

0 // Hk�1(M ;T)  //d
Sol

k(M)
curv // ⌦k

Z, �(M) // 0 (3.4)

In order to restrict the complete diagram (2.12) to the solution subgroups we need the following

Lemma 3.6. The inverse image of

d

Sol

k(M) under the topological trivialization ◆ is given by

Sol

k(M) := ◆�1

⇣

d

Sol

k(M)
⌘

=

(

[⌘] 2 ⌦k�1(M)

⌦k�1

Z (M)
: �d⌘ = 0

)

. (3.5)

Proof. This follows immediately from the commuting square in the upper right corner of the
diagram (2.12); indeed, [⌘] 2 ⌦k�1(M)/⌦k�1

Z (M) maps under ◆ to d

Sol

k(M) if and only if d⌘
is coclosed.

Denoting by (d⌦k�1)�(M) the space of exact k-forms which are also coclosed, we obtain

Theorem 3.7. The following diagram commutes and has exact rows and columns:

0

✏✏

0

✏✏

0

✏✏

0 // H
k�1

(M ;R)
Hk�1

free

(M ;Z)

✏✏

//
Sol

k(M)

◆

✏✏

d // (d⌦k�1)�(M) //

✏✏

0

0 // Hk�1(M ;T)

✏✏

 //d
Sol

k(M)

char

✏✏

curv // ⌦k
Z, �(M)

✏✏

// 0

0 // Hk
tor

(M ;Z)

✏✏

// Hk(M ;Z)

✏✏

// Hk
free

(M ;Z)

✏✏

// 0

0 0 0

(3.6)

Proof. The only nontrivial step is to show that char : d

Sol

k(M) ! Hk(M ;Z) is surjective.
Let u 2 Hk(M ;Z) be any cohomology class. Due to the middle vertical exact sequence
in (2.12) there exists h 2 bHk(M ;Z), such that char(h) = u. Notice that such an h is not
necessarily an element in d

Sol

k(M), i.e. in general 0 6= MW(h) 2 ⌦k�1(M). Let us now take an
[⌘] 2 ⌦k�1(M)/⌦k�1

Z (M) and note that the characteristic class of h0 := h+◆
�

[⌘]
�

2 bHk(M ;Z)
is again u as ◆ maps to the kernel of char. We now show that [⌘] can be chosen such that
MW(h0) = 0, which completes the proof. Indeed, posing MW(h0) = 0 as a condition we obtain
the partial differential equation

0 = MW(h) +MW
�

◆([⌘])
�

= MW(h) + �d⌘ , (3.7)

where ⌘ 2 ⌦k�1(M) is any representative of the class [⌘]. As the inhomogeneity MW(h) =
�
�

curv(h)
�

is coexact (hence, in particular coclosed), there always exists a solution ⌘ to the
equation (3.7), see e.g. [SDH12, Section 2.3].

10

Thm: Ŝol
k
(f) : Ŝol

k
(N)→ Ŝol

k
(M) is Ab-isomorphism for any Cauchy

morphism f : M → N . (Classical time-slice axiom)
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Character groups and smooth Pontryagin duals
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Sketch of the general idea

� Ĥk(M ;Z) are configurations, now we want functionals Ĥk(M ;Z)→ C !

� As Ĥk(M ;Z) is Abelian group ∃ preferred functionals (group characters)

Ĥk(M ;Z)? := Hom
(
Ĥk(M ;Z),T

)
NB: Ĥk(M ;Z)? is not a unital ∗-algebra, but an Abelian group. It’s clear that

Ĥk(M ;Z)? can be extended to a unital ∗-algebra by C-linear completion.
So let’s study this group and construct the algebra later. . .

??? The character groups are really much too big (we didn’t assume any
continuity, regularity, etc.). What should we do?

!!! Restrict them by making use of the following observation:

The character group of p-forms Ωp(M) has subgroup Ωp0(M) by the
identification W : Ωp0(M)→ Ωp(M)?

Wϕ(ω) = exp
(
2πi〈ϕ, ω〉

)
= exp

(
2πi

∫
M

ϕ ∧ ∗ω
)
.

NB: [Harvey,Lawson,Zweck] did a similar thing while working on differential character
duality and called such subgroups smooth Pontryagin duals.
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List of the smooth Pontryagin duals we need

� Our aim is to dualize (via the exact Hom-functor Hom( · ,T) and restriction
to smooth Pontryagin duals) the fundamental diagram and exact sequences
of differential cohomology.

� For everything involving the ordinary cohomology groups we take as smooth
Pontryagin duals the full character groups.

� For everything involving differential forms we follow the strategy above and
set for the smooth Pontryagin duals:

–
(Ωk−1(M)

Ωk−1
Z (M)

)?
∞ := Vk−1(M) :=

{
ϕ ∈ Ωk−1

0 (M) :Wϕ(ω) = 1 ∀ω ∈ Ωk−1
Z (M)

}
–
(
dΩk−1(M)

)?
∞ := δΩk0(M)

– ΩkZ(M)?∞ :=
Ωk

0 (M)

Vk(M)

– Ĥk(M ;Z)?∞ := ι?−1
(
Vk−1(M)

)
, where ι? := Hom(ι,T) is dual map between

character groups.

Prop: All smooth Pontryagin duals defined above are given by covariant functors
from Locm to Ab and they separate points of the Abelian groups they act on.
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Fundamental theorem for smooth Pontryagin duals

Thm: The following natural diagram commutes and it has exact rows and columns:

0

��

0

��

0

��

0 // Hk
free(M ;Z)?

��

// Hk(M ;Z)? //

char?

��

Hk
tor(M ;Z)?

��

// 0

0 // Ω
k
0 (M)

Vk(M)

δ

��

curv?
// Ĥk(M ;Z)?∞

ι?

��

κ?
// Hk−1(M ;T)?

��

// 0

0 // δΩk0(M)

��

// Vk−1(M)

��

// Hk
free(M ;Z)′

��

// 0

0 0 0

Rem: This diagram and exact sequences will later tell us a lot about the classical
and quantum field theory, especially their subtheory structure!
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Presymplectic structure on smooth Pontryagin duals
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Presymplectic structure via Peierls’ construction

� Using the generalized Maxwell Lagrangian

L(h) =
1

2
curv(h) ∧ ∗curv(h)

and the interpretation of group characters w ∈ Ĥk(M ;Z)?∞ as functionals

w : Ĥk(M ;Z)→ C via the inclusion T ↪→ C, we can construct a

presymplectic structure on Ĥk(M ;Z)?∞.

� This also requires to define functional derivatives, which can be easily
guessed, but also derived from an ∞-dimensional Lie group structure on
Ĥk(M ;Z) (the latter is still work in progress). For a tangent vector
[η] ∈ Ωk−1(M)/dΩk−2(M) we set

w(1)(h)
(
[η]
)

:= lim
ε→0

w
(
h+ ι([εη])

)
− w(h)

ε
= w(h) 2πi 〈ι?(w), [η]〉 .

� Using Peierls’ construction we obtain a Poisson bracket, which is coming
from the following presymplectic structure on Ĥk(M ;Z)?∞

τ̂
(
w, v

)
= 〈ι?(w), G

(
ι?(v)

)
〉 .
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Off-shell classical field theory and its subtheory structure

� Using the presymplectic structure τ̂ on Ĥk(M ;Z)?∞ and that it is the

pull-back via ι∗ of a presymplectic structure τ on
(
Ωk−1(M)/Ωk−1Z (M)

)?
∞,

we can construct the following covariant functors from Locm to PAb:

– Full classical theory: Ĝk( · ) :=
(
Ĥk( · ;Z)?∞, τ̂

)
– Topologically trivial classical theory: Gk( · ) :=

((
Ωk−1( · )/Ωk−1

Z ( · )
)?
∞, τ

)
– Classical curvature theory: Fk( · ) :=

(
ΩkZ( · )?∞, τF

)
– Classical purely topological theory:

(
Hk( · ;Z)?, 0

)
� From the fundamental theorem for smooth Pontryagin duals we get the

following diagram in PAb with exact sequences:

0

��

Fk(M)

curv?

��

0 //

‘magnetic’︷ ︸︸ ︷
Hk(M ;Z)?

char? // Ĝk(M)
ι? // Gk(M) // 0
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On-shell theory and even more subtheory structure

� (On-shell theory) := (Off-shell theory)/(vanishing subgroups of solutions)

� Denoting the on-shell functors by the same symbols, we get an even richer
subtheory structure:

0

��

0 // Hm−k(M ;R)?︸ ︷︷ ︸
‘electric’

q?

// Fk(M)

curv?

��

0 // Hk(M ;Z)?︸ ︷︷ ︸
‘magnetic’

char? // Ĝk(M)
ι? // Gk(M) // 0

� Important: The subfunctor Chargek( · ) := Hm−k( · ;R)? ⊕Hk( · ;Z)?

describes “electric” and “magnetic” charge observables. It is purely
topological and depends only on the homotopy type of spacetime!
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Quantization and properties of the QFT
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Quantization and properties of the QFT

� Quantization is easily done via the CCR-functor CCR : PAb→ C∗Alg for
presymplectic Abelian groups [Manusceau et al.; Benini,Dappiaggi,Hack,AS]

� Warning: CCR is not an exact functor! Fortunately it preserves
monomorphisms, so we have the same subtheory structure!

� Properties of the QFT functor Âk : Locm → C∗Alg:

– causality axiom �

– time-slice axiom �

– locality axiom  (unless m = 2 and k = 1)

� Important: The violation of the locality axiom can be precisely related to
the topological subtheory structure, namely

Thm: For any Locm-morphism f : M → N the C∗Alg-morphism
Âk(f) : Âk(M)→ Âk(N) is injective if and only if the Ab-morphism
Chargek(f) : Chargek(M)→ Chargek(N) is injective.

� In easy words: The purely topological subtheory is the only source of
violations of the locality axiom!

� Or even easier: “Magnetic” and “electric” charges are the only things that
can screw up locality in Abelian gauge theories of any degree!
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Conclusion
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Conclusions

� Differential cohomology is a very effective technique to construct Abelian
gauge theories in any degree (i.e. k−2-gerbes with connections).

� From the fundamental diagram and exact sequences defining a differential
cohomology theory (up to nat. iso.) already a lot of properties of the classical
and quantum field theory follow, e.g. the existence of subfunctors.

� Most interesting is the subfunctor Chargek( · ) := Hm−k( · ;R)? ⊕Hk( · ;Z)?,
which depends only on the topology of spacetime.

� It is fair to call CCR(Chargek( · )) a topological QFT (from the perspective
of an algebraic quantum field theorist, not from the perspective of Atiyah).

� So Abelian quantum gauge theories have topological sub-QFTs!

� The infamous violation of the locality axiom is precisely due to this
topological sub-QFT.

� Open problems/Work in progress: What is the role of the group of flat
characters? “θ-angle” representations? Abelian S-duality? Differential
K-theory?
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