Supergeometry in locally covariant QFT

Alexander Schenkel

Department of Mathematics, Heriot-Watt University, Edinburgh

Seminar talk @ Department of Mathematics, University of Genova. January 14, 2015.

Based on joint work with T. -P. Hack and F. Hanisch arXiv:1501.01520 [math-ph]

Motivation

 Supersymmetric QFTs are interesting because of their unexpected renormalization properties

 \sim 'non-renormalization theorems' [Grisaru,Rocek,Siegel; Seiberg; \ldots]

- $\diamond~$ Usual framework is very restrictive: super-QFTs on super-Minkowski space.
- Q: Do the non-renormalization theorems survive on curved supermanifolds?
- A: We don't know yet! Analyzing this question requires heavy machinery such as perturbative locally covariant QFT [Brunetti,Fredenhagen; ...].
 - Our goal is to develop mathematical techniques which will eventually allow us to give an answer to this question.

o Goals of my talk:

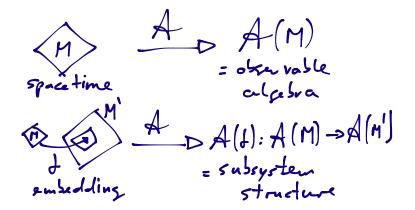
- 1. Understand the structure of supersymmetry transformations in locally covariant QFT. (This will be an essential ingredient for proving non-renormalization theorems!)
- 2. Construct non-interacting models of super-QFTs and analyze their structure. (Perturbatively interacting models then will be deformations of those.)

Outline

- 1. What is locally covariant QFT?
- 2. Super-Cartan supermanifolds
- 3. A too naive approach to super-QFTs
- 4. Enriched category theory and super-QFTs
- 5. Examples in 1|1 and 3|2-dimensions
- 6. Summary and outlook

What is locally covariant QFT?

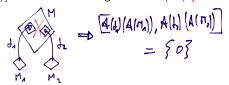
What should a QFT do?



+ suitable axioms

Locally covariant QFT

- **Def:** A locally covariant QFT (LCQFT) [Brunetti,Fredenhagen,Verch] is a functor $\mathfrak{A} : \mathsf{Loc} \to (C)^*\mathsf{Alg}$, such that
 - (i) if $f_1: M_1 \to M$ and $f_2: M_2 \to M$ are causally disjoint, then $\mathfrak{A}(f_1)[\mathfrak{A}(M_1)]$ and $\mathfrak{A}(f_2)[\mathfrak{A}(M_2)]$ commute as subalgebras of $\mathfrak{A}(M)$ (causality axiom)



(ii) if $f: M \to M'$ is Cauchy morphism (i.e. $f[M] \subseteq M'$ contains Cauchy surface), then $\mathfrak{A}(f)$ is isomorphism (time-slice axiom)

$$\begin{array}{c} \begin{array}{c} M' \\ \end{array} \\ \end{array} \\ = D \end{array} A(n) \stackrel{A(h)}{\simeq} A(n') \\ \end{array}$$

(iii) all $\mathfrak{A}(f): \mathfrak{A}(M) \to \mathfrak{A}(M')$ are injective (locality axiom)

Super-Cartan supermanifolds

Supermanifolds

- Recall that there are two equivalent ways to look at smooth manifolds:
 - 1. A topological space \widetilde{M} which locally looks like \mathbb{R}^n (i.e. \exists smooth atlas).
 - 2. A sheaf $M = (\widetilde{M}, \mathscr{O}_M)$ of commutative algebras on \widetilde{M} which locally looks like $(\mathbb{R}^n, C^{\infty}_{\mathbb{R}^n})$.
- **Def:** A supermanifold is a sheaf $M = (\widetilde{M}, \mathscr{O}_M)$ of supercommutative superalgebras which locally looks like $\mathbb{R}^{n|m} := (\mathbb{R}^n, C^{\infty}_{\mathbb{R}^n} \otimes \bigwedge^{\bullet} \mathbb{R}^m)$.
 - Most differential geometric concepts easily generalize to supermanifolds:
 - super-vector fields: sheaf of superderivations Der_M
 - super-one-forms: dual sheaf $\Omega^1_M = \underline{\operatorname{Hom}}_{\mathscr{O}_M}(\operatorname{Der}_M, \mathscr{O}_M)$
 - super-forms: $\Omega^{\bullet}_M = \bigwedge^{\bullet} \Omega^1_M$ with differential $d: \Omega^{\bullet}_M \to \Omega^{\bullet+1}_M$

NB: If $m \neq 0$, there are no top-degree forms \Rightarrow super-integration differs!

♦ Solution: Berezin integration $\int_M : \text{Ber}_c(\Omega^1_M) \to \mathbb{R}$ (for M oriented) defined by globalizing $\int_{\mathbb{R}^{n|m}} [dx^1, \ldots, dx^n, d\theta^1, \ldots, d\theta^m] f = \int_{\mathbb{R}^n} d^n x f_{(1,\ldots,1)}$, where we used odd-coordinate expansion $f = f^{\text{lower order}} + \theta^m \cdots \theta^1 f_{(1,\ldots,1)}$.

Super-Cartan structures

- Wanted: 'Superspacetime' structure on supermanifolds.
- ◊ Motivated by the superspace formulation of supergravity [Wess,Zumino; ...], super-Cartan structures are the correct concept:
- **Def:** A (globally trivial and trivialized) super-Cartan structure on M is a pair (Ω, E) consisting of an even super-spin connection $\Omega \in \Omega^1(M, \mathfrak{spin})$ and a non-degenerate and even supervielbein $E \in \Omega^1(M, \mathfrak{t})$.

We call the triple $M = (M, \Omega, E)$ a super-Cartan supermanifold.

NB: For defining super-Cartan structures we need a supertranslation super-Lie algebra t and a super-Poincaré super-Lie algebra \mathfrak{sp} , specified by the super-Lie algebra extension $\mathfrak{t} \longrightarrow \mathfrak{sp} \longrightarrow \mathfrak{spin}$.

These structures can be derived from the following data:

- real vector space W,
- Lorentz metric $g: W \otimes W \to \mathbb{R}$,
- Spin(W, g)-representation S and equivariant symmetric pairing $\Gamma: S \otimes S \to W$.

For later use, we also want a positive time-like cone $C \subset W$ (time-orientation), an equivariant metric or symplectic structure $\epsilon : S \otimes S \to \mathbb{R}$ and orientations o_W and o_S .

Interpretation: The representation theoretic data $(W, g, S, \Gamma, C, \epsilon, o_W, o_S)$ is the local (oriented and time-oriented) model space for the super-Cartan supermanifolds.

Globally hyperbolic super-Cartan supermanifolds

Prop: There is a functor $\tilde{\cdot}$: SCart \rightarrow otLor.

To any super-Cartan supermanifold $M = (M, \Omega, E)$ it assigns the oriented and time-oriented Lorentz manifold \widetilde{M} with underlying manifold $(\widetilde{M}, \mathscr{O}_M/J_M)$ $(J_M$ is sheaf of nilpotents) and metric, orientation and time-orientation determined by the pull-back $\widetilde{E} = \iota^*_{\widetilde{M},M}(E)$ of the supervielbein along the canonical embedding $\iota_{\widetilde{M},M} : \widetilde{M} \to M$.

- **Def:** (i) The causal future/past of a subset $A \subseteq \widetilde{M}$ in a super-Cartan supermanifold M is defined in terms of its underlying oriented and time-oriented Lorentz manifold \widetilde{M} , i.e. $J_{\widetilde{M}}^{\pm}(A) := J_{\widetilde{M}}^{\pm}(A) \subseteq \widetilde{M}$.
 - (ii) A super-Cartan supermanifold M is called globally hyperbolic if \widetilde{M} is globally hyperbolic.
 - (iii) The category ghSCart has as objects all globally hyperbolic super-Cartan supermanifolds and as morphisms all SMan-morphisms $\chi: M \to M'$ such that
 - 1. $\widetilde{\chi}:\widetilde{M}\to\widetilde{M'}$ is open and causally compatible,

2.
$$\chi: M \to M'|_{\widetilde{\chi}(\widetilde{M})}$$
 is SMan-isomorphism,

3. $\chi^*(\Omega') = \Omega$ and $\chi^*(E') = E$.

NB: One could weaken 3. by demanding the identities 'up to local Spin(W, g)-transformations'. Requires understanding of super-principal bundles and their automorphisms \rightarrow future work!

A too naive approach to super-QFTs

Axiomatic definition of super-field theories

- ◊ Goal: Give a simple characterization of classical super-field theories, which allows us to give a general construction of super-QFT functors.
- **Def:** A super-field theory is specified by the following data:
 - 1. A choice of representation theoretic data $(W, g, S, \Gamma, C, \epsilon, o_W, o_S)$.
 - 2. A full subcategory SLoc of ghSCart.
 - 3. A natural transformation $P : \mathcal{O} \Rightarrow \mathcal{O}$ of functors $\mathcal{O} : \text{SLoc}^{\text{op}} \rightarrow \underline{\text{SVec}}$, such that any P_M is a formally super-self adjoint and super-Green's hyperbolic super-differential operator (with $|P_M| = \dim(S) \mod 2$).
- **Rem:** 1. This data fixes the local model space and hence the dimension of spacetime and the amount of supersymmetry.
 - 2. In SLoc we collect all admissible super-Cartan supermanifolds, e.g. those satisfying the supergravity supertorsion constraints.
 - The natural super-differential operator P_M governs the dynamics of the superfield Φ ∈ O(M), i.e. the equation of motion is P_M(Φ) = 0.
 For technical reasons we want the P_M to be formally super-self adjoint w.r.t. the natural pairing ⟨F₁, F₂⟩_M = ∫_M Ber(E) F₁ F₂ (Berezin integral) and to admit retarded/advanced super-Green's operators G[±]_M : O_c(M) → O(M).

Construction of super-QFTs

Theorem (Existence of super-QFT functors)

Given any super-field theory according to the definition above, there exists a functor $\mathfrak{A}:SLoc\to S^*Alg$ satisfying

- ♦ Locality: For any SLoc-morphism $\chi : M \to M'$, the S*Alg-morphism $\mathfrak{A}(\chi) : \mathfrak{A}(M) \to \mathfrak{A}(M')$ is monic.
- \diamond Causality: Given any two SLoc-morphisms $M_1 \xrightarrow{\chi_1} M \xleftarrow{\chi_2} M_2$ such that the images of the reduced otLor-morphisms $\widetilde{M_1} \xrightarrow{\widetilde{\chi_1}} \widetilde{M} \xleftarrow{\widetilde{\chi_2}} \widetilde{M_2}$ are causally disjoint, then

$$a_1 a_2 + (-1)^{|P_M|+1} (-1)^{|a_1||a_2|} a_2 a_1 = 0$$
,

for all homogeneous $a_1 \in \mathfrak{A}(\chi_1)(\mathfrak{A}(M_1))$ and $a_2 \in \mathfrak{A}(\chi_2)(\mathfrak{A}(M_2))$.

♦ Time-slice axiom: Given any Cauchy SLoc-morphism $\chi : M \to M'$, then $\mathfrak{A}(\chi) : \mathfrak{A}(M) \to \mathfrak{A}(M')$ is a S*Alg-isomorphism.

The proof is a quite simple generalization of the corresponding proof for ordinary QFTs, see e.g. [Bär,Ginoux,Pfäffle; \ldots].

Properties of the super-QFT

- **Prop:** The functor \mathfrak{A} : SLoc \rightarrow S*Alg has a locally covariant quantum field of type \mathscr{O}_{c} : SLoc \rightarrow SVec (i.e. a scalar super-quantum field)
 - ♦ Explicitly, there exists a natural transformation $\Phi : \mathscr{O}_{c} \Rightarrow \mathfrak{A}$ such that $\Phi_{M}(P_{M}(F)) = 0$, $\Phi_{M}(F_{1})\Phi_{M}(F_{2}) + (-1)^{|P_{M}|+1} (-1)^{|F_{1}||F_{2}|} \Phi_{M}(F_{2})\Phi_{M}(F_{1}) = \beta \langle G_{M}(F_{1}), F_{2} \rangle_{M}$,

i.e. Φ satisfies the equation of motion $P_M(\Phi_M) = 0$ and the SCCR/SCAR-properties ($\beta = i$ if P_M is even and $\beta = 1$ if P_M is odd).

- ♦ **Problem:** We can decompose $\mathscr{O}_c = \mathscr{O}_c^{even} \oplus \mathscr{O}_c^{odd}$ and obtain that the restrictions $\Phi^{even/odd} : \mathscr{O}_c^{even/odd} \Rightarrow \mathfrak{A}$ are also natural transformations.
 - \sim bosonic/fermionic component quantum-fields are also natural
 - \sim supersymmetry transformations not correctly implemented \circ
- Reason: The categories SLoc, <u>SVec</u> and S*Alg do not contain enough morphisms!

Enriched category theory and super-QFTs

Basic idea: Morphism supersets

- \diamond The SLoc-morphisms $\chi: M \to M'$ are all even, so no supersymmetry transformations possible. $(\chi^*: \mathscr{O}(M') \to \mathscr{O}(M)$ always preserves even/odd-splitting.)
- ♦ **Idea:** "Fatten up" M and M' by superpoints $pt_n = (\{\star\}, \Lambda_n)$ and consider morphisms $\chi : pt_n \times M \to pt_n \times M'$ preserving the fibrations over pt_n .
- $\label{eq:constraint} \diamond \ \chi^*: \Lambda_n \otimes \mathscr{O}(M') \to \Lambda_n \otimes \mathscr{O}(M) \text{ is } \Lambda_n \text{-linear superalgebra morphism which schematically acts on } \mathbbm{1} \otimes F \in \Lambda_n \otimes \mathscr{O}(M') \text{ as }$

$$\chi^*(\mathbbm{1}\otimes F) = \sum_I \xi^I \otimes \chi^*_I(F) \ , \qquad ext{with } \xi^I ext{ basis of } \Lambda_n \ .$$

- $\Rightarrow \text{ If } \chi_I^* \neq 0 \text{ for some odd } \xi^I \text{, then } \chi^* \text{ does$ **not** $preserve splitting } \Lambda_n \otimes \mathscr{O}^{\operatorname{even/odd}}(M^{(\prime)}) \Rightarrow \text{SUSY transformations!}$
 - ♦ Fixing any superpoint pt_n is not clever (which one should we fix?) ⇒ we have to work functorially over **all** superpoints!
- **Def:** The monoidal category of supersets is defined by $SSet := Fun(SPt^{op}, Set)$.
 - **Ex:** "Fattened up" morphisms $\mathsf{FatMorph}(M, M')$ are a superset; explicitly, $\mathsf{FatMorph}(M, M')(\mathrm{pt}_n) := \mathrm{Hom}_{\mathsf{SMan/pt}_n}(\mathrm{pt}_n \times M, \mathrm{pt}_n \times M').$

Enriched categories

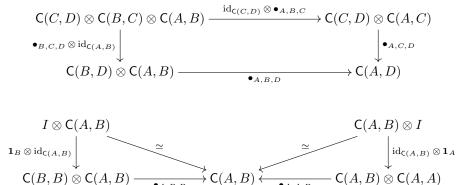
In a usual category, the morphisms between two objects have to form a set.
 We however want to have morphism supersets between objects in SLoc.

- ◊ How can we do that?
- **Def:** Let (V, \otimes, I) be (strict) monoidal category. A V-category C (or V-enriched category) consists of
 - a class of objects $\operatorname{Ob}(\mathsf{C})$,
 - an 'object of morphisms' $\mathsf{C}(A,B)$ in V , for all $A,B\in \mathrm{Ob}(\mathsf{C})$,
 - a 'composition morphism' $\bullet_{A,B,C}$: $C(B,C) \otimes C(A,B) \rightarrow C(A,C)$ in V, for all $A, B, C \in Ob(C)$,
 - an 'identity on A morphism' $\mathbf{1}_A: I \to \mathsf{C}(A, A)$ in V, for all $A \in \mathrm{Ob}(\mathsf{C})$,

such that the $\bullet_{-,-,-}$ and $\mathbf{1}_{-}$ satisfy associativity and unity conditions.

- Rem: Ordinary categories are Set-categories.
- **Rem:** Enriched functors and natural transformations are easy to define. (Homework!)

Associativity and unity conditions



 $\bullet_{A,A,B}$

 $\mathsf{C}(B,B)\otimes\mathsf{C}(A,B)$

• A.B.B

Axioms for enriched super-field theories

- ◊ By "fattening up" the morphisms in SLoc, <u>SVec</u> and S*Alg, we get SSet-categories eSLoc, <u>eSVec</u> and eS*Alg. (Quite technical!)
- Important: Enriching does change the morphisms, but not the objects!!!
- ♦ The global section functor $\mathscr{O} : \mathsf{SLoc}^{\mathrm{op}} \to \underline{\mathsf{SVec}}$ extends to a SSet-functor $\mathfrak{eO} : \mathsf{eSLoc}^{\mathrm{op}} \to \underline{\mathsf{eSVec}}$.
- **Def:** An enriched super-field theory is a super-field theory, such that the natural transformation $P : \mathcal{O} \Rightarrow \mathcal{O}$ lifts to a SSet-natural trafo $eP : \mathfrak{eO} \Rightarrow \mathfrak{eO}$.

Prop: A super-field theory is an enriched super-field theory if and only if the diagram

commutes for all fattened morphisms $\chi \in \mathsf{eSLoc}(\boldsymbol{M}, \boldsymbol{M}')(\mathrm{pt}_n).$

 \diamond *Physically:* SUSY covariance of the super-differential operators P_M .

Construction of enriched super-QFTs

Theorem (Existence of enriched super-QFT functors)

Given any enriched super-field theory according to the definition above, there exists a SSet-functor $\mathfrak{eA}: eSLoc \to eS^*Alg$ satisfying

- ◇ Enriched causality: Given any $\chi_1 \in \mathsf{eSLoc}(M_1, M)(\mathrm{pt}_n)$ and $\chi_2 \in \mathsf{eSLoc}(M_2, M)(\mathrm{pt}_n)$, such that the images of the reduced otLor-morphisms $\widetilde{M_1} \xrightarrow{\widetilde{\chi_1}} \widetilde{M} \xleftarrow{\widetilde{\chi_2}} \widetilde{M_2}$ are causally disjoint, then

$$A_1 A_2 + (-1)^{|P_M|+1} (-1)^{|A_1||A_2|} A_2 A_1 = 0 ,$$

for all homogeneous $A_1 \in (\mathfrak{eA}_{M_1,M})_{\mathrm{pt}_n}(\chi_1)(\Lambda_n^{\mathbb{C}} \otimes_{\mathbb{C}} \mathfrak{A}(M_1))$ and $A_2 \in (\mathfrak{eA}_{M_2,M})_{\mathrm{pt}_n}(\chi_2)(\Lambda_n^{\mathbb{C}} \otimes_{\mathbb{C}} \mathfrak{A}(M_2)).$

♦ Enriched time-slice axiom: Given any $\chi \in eSLoc(M, M')(pt_n)$ such that $\widetilde{\chi} : \widetilde{M} \to \widetilde{M'}$ is Cauchy, then $(\mathfrak{eA}_{M,M'})_{pt_n}(\chi) \in eS^*Alg(\mathfrak{A}(M), \mathfrak{A}(M'))(pt_n)$ is an isomorphism.

Properties of the enriched super-QFT

- **Prop:** The SSet-functor \mathfrak{eA} : eSLoc \rightarrow eS*Alg has an enriched locally covariant quantum field of type \mathfrak{eO}_c : eSLoc \rightarrow eSVec.
 - ♦ Explicitly, there exists a SSet-natural transformation $\Phi : \mathfrak{eO}_c \Rightarrow \mathfrak{eA}$ with components Φ_M (= natural transformations of functors from SPt^{op} to SSet) satisfying the equation of motion and SCCR/SCAR-properties.
 - ♦ Important: By construction, Φ_M transforms also good under 'fattened up' morphisms, i.e. SUSY transformations. As a consequence, it does **not** restrict to $\mathscr{O}_c^{\mathrm{even/odd}}$ provided there exists a 'fattened up' $\chi : \mathrm{pt}_n \times M \to \mathrm{pt}_n \times M'$, such that $\chi^*(\mathbb{1} \otimes F) = \sum_I \xi^I \otimes \chi_I^*(F)$ with $\chi_I^* \neq 0$ for some odd ξ^I .
 - *Physical relevance:* Enriched natural transformations are more restrictive; in particular one can not treat bosonic and fermionic components independently. This will reduce the renormalization freedom when constructing super-Wick-polynomials in terms of SSet-natural transformations!

(Work in progress; master's thesis of Angelo Cuzzola.)

Examples in 1|1 and 3|2-dimensions

The superparticle in 1|1-dimensions

- Let's start with the lowest-dimensional example:
 - Representation theoretic data: Choose $W = \mathbb{R}$ with standard metric g. Then $\operatorname{Spin}(W,g) \simeq \{\pm 1\}$ and take $S = \mathbb{R}$ spin-representation with $\Gamma(s_1,s_2) = s_1s_2$. In orthonormal basis, the super-Poincaré super-Lie algebra is generated by $p \in W$ and $q \in S$, satisfying [p, p] = 0, [p, q] = 0 and [q, q] = -2p.
 - Category SLoc: Take super-Cartan supermanifolds $M = (M, \Omega = 0, E)$ with underlying $\widetilde{M} \subseteq \mathbb{R}$. Demand that M satisfies supertorsion constraints \Rightarrow $E = (dt + \theta d\theta) \otimes p + d\theta \otimes q$.
 - SDiffOp: Take dual superderivations $X = \partial_t$ and $D = \partial_\theta + \theta \partial_t$ and define $P_M := X \circ D = \partial_t \partial_\theta + \theta \partial_t^2$. Then P is natural, formally super self-adjoint and super-Green's hyperbolic. Component equations: $P_M(\Phi) = \partial_t \psi + \theta \partial_t^2 \phi = 0$

Prop: This data specifies an enriched super-field theory.

- ♦ The enriched automorphism group eSLoc(M, M) is a group object in SSet, which is nontrivial for any M and representable by $\mathbb{R}^{1|1}$ if $\widetilde{M} = \mathbb{R}$.
- $\label{eq:stars} \begin{array}{l} \diamond \;\; \mbox{Expanding } \Phi_{\boldsymbol{M}}(f+\theta h) = \psi_{\boldsymbol{M}}(f) + \phi_{\boldsymbol{M}}(h), \mbox{ one recovers from the SSet-functor } e\mathfrak{A} : eSLoc \rightarrow eS^* Alg \mbox{ the ordinary SUSY transformations } \\ \delta^{\rm SUSY} \phi_{\boldsymbol{M}}(h) = -\psi_{\boldsymbol{M}}(h) \mbox{ and } \delta^{\rm SUSY} \psi_{\boldsymbol{M}}(f) = \phi_{\boldsymbol{M}}(\partial_t f). \end{array}$

The Wess-Zumino model in 3|2-dimensions

- In 3|2-dimensions things get much more complicated/lengthy. A rough sketch of the construction of the free Wess-Zumino model is as follows:
 - Representation theoretic data: Can be looked up in textbooks...
 - Category SLoc: For simplicity assume that M has trivial Batchelor bundle, $\mathscr{O}_M \simeq C^\infty_M \otimes \bigwedge^{\bullet} \mathbb{R}^2$. Demand supertorsion constraints to simplify form of supervielbeins $E = e^{\alpha} \otimes p_{\alpha} + \zeta^a \otimes q_a$. (Also needed for s.f.s.a.!)
 - *SDiffOp:* Using the dual superderivations X_{α} and D_a and the covariant differential $d_{\Omega} = d + \Omega$, we define super-differential operator

$$P_{\boldsymbol{M}}(\Phi) = \frac{1}{2} \,\epsilon^{ab} \,\langle D_b, \mathbf{d}_{\Omega}(D_a \Phi) \rangle + m \,\Phi$$

Prop: This data specifies an enriched super-field theory.

Rem: It is astonishing that the supertorsion constraints restrict M such that the only d.o.f. are given by an ordinary vielbein \widetilde{E} on \widetilde{M} . The equation of motion $P_{M}(\Phi) = 0$ implies the component equations, for $\Phi = \phi + \theta^{a}\psi_{a} + \frac{\theta^{2}}{2}\eta$,

$$-\eta + m \varphi = 0 , \quad i \nabla \psi_a + m \psi_a = 0 , \quad \Box \varphi + m \eta = 0 .$$

Summary and outlook

Summary and outlook

$\diamond\,$ We have:

- understood that enriched category theory plays a major role in combining supergeometry with locally covariant QFT. (SUSY transformations!)
- a general construction of enriched non-interacting super-QFT functors $\mathfrak{eA}:\mathsf{eSLoc}\to\mathsf{eS^*Alg}$ starting from "simple" representation theoretic and geometric data.
- found that the superparticle and the Wess-Zumino model in 3|2-dimensions fits into our framework.

We still have to:

- understand how to use the powerful framework of enriched natural transformations to construct super-Wick-polynomials and study their renormalization properties.
- understand how supergeometry improves the construction of perturbatively interacting QFTs. (Need super-microlocal analysis!!)
- include global aspects of super-Cartan geometry and in particular super-gauge invariance.