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Motivation

� The Klein-Gordon field is by far the best studied model of QFT on curved
spacetimes, so let us call it the standard model of LCQFT.

� This is not a coincidence, but a consequence of the simplicity of this model:

– linear configuration space C∞(M)

– linear dynamics P (φ) = (�+m2)φ = 0

– linear solution space Sol(M) = {φ ∈ C∞(M) : P (φ) = 0}

� This linear structure is also shared by other models, e.g. the free Dirac field,
but it is not present in gauge and/or interacting theories.

� Since interacting theories are too complicated (at the moment), we shall look
at the simplest generalization of linear theories:

– affine configuration space

– affine dynamics

– affine solution space

Goal: Obtain a full understanding of the simplest affine model, which is the
inhomogeneous Klein-Gordon field P (φ) = (�+m2)φ+J = 0.

⇒ A new and more involved standard model for LCQFT!?!?!

A. Schenkel (Wuppertal University) Inhomogeneous Klein-Gordon field Seminar @ Pavia 13 2 / 18



Outline

1. Locally covariant QFT in one slide

2. The inhomogeneous Klein-Gordon field à la BDS
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Locally covariant QFT in one slide
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Locally covariant QFT: The shortest crashcourse ever!

� What should a QFT do?

 

Def: A locally covariant QFT (LCQFT) (à la Brunetti, Fredenhagen, Verch) is a
covariant functor A : Loc→ (C)∗Alg, such that

(i) if f1 :M1 →M and f2 :M2 →M are causally disjoint, then A(f1)[A(M1)]
and A(f2)[A(M2)] commute as subalgebras of A(M) (causality axiom)

(ii) if f :M →M ′ is Cauchy morphism (i.e. f [M ] ⊆M ′ contains Cauchy
surface), then A(f) is isomorphism (time-slice axiom)
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The inhomogeneous Klein-Gordon field à la BDS
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Inhomogeneous field theory → Affine field theory

� In [Benini,Dappiaggi,Schenkel: AHP 2013] we have proposed to consider
inhomogeneous field theories as a special class of affine field theories.

� To see how this works, take your favorite linear field theory, i.e.

– a geometric category Geo,

– a contravariant functor of vector bundle sections C∞ : Geo→ Vec, and

– a natural transformation by Green-hyperbolic operators P lin : C∞ ⇒ C∞.

� The inhomogeneous theory is then given by the following data:

– the enriched geometric category GeoSrc with objects being tuples
(M,J ∈ C∞(M)) and compatible morphisms,

– the contravariant functor A∞ : GeoSrc→ Aff obtained by applying the
forgetful functor Vec→ Aff to C∞, and

– the natural transformation by affine Green-hyperbolic operators P : A∞ ⇒ C∞

given by P(M,J)( · ) = P lin
M ( · ) + J .

� To any such inhomogeneous theory one can assign a covariant functor
PhSp : GeoSrc→ PreSymp and a locally covariant QFT
A := CCR ◦PhSp : GeoSrc→ ∗Alg. [BDS]

 I will now show the details for the inhomogeneous Klein-Gordon field.
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The inhomogeneous Klein-Gordon field: Kinematics

� For the Klein-Gordon field a suitable geometric category is

Loc: Obj(Loc) are oriented, time-oriented and glob. hyp. Lorentzian manifolds.

Mor(Loc) are orientation and time-orientation preserving isometric
embeddings, such that the image is causally compatible and open.

� A multiplet of p ∈ N homogeneous Klein-Gordon fields is described by:

– contravariant functor C∞p : Loc→ Vec, with C∞p (M) = C∞(M,Rp) and
C∞p (f :M1 →M2) = f∗ : C∞(M2,Rp)→ C∞(M1,Rp),

– natural transformation KG : C∞p ⇒ C∞p

KGM : C∞p (M)→ C∞p (M) , φ 7→ KGM (φ) = (�M +m2)φ

� Following the general recipe, we get:

LocSrcp: Obj(LocSrcp) are tuples (M,J), where M in Loc and J ∈ C∞p (M).

Mor(LocSrcp) are all morphisms f :M1 →M2 in Loc, such that
C∞p (f)(J2) = f∗(J2) = J1.

– contravariant functor A∞p : LocSrcp → Vec, with A∞p (M,J) = C∞(M,Rp)
and A∞p (f : (M1, J1)→ (M2, J2)) = f∗ : C∞(M2,Rp)→ C∞(M1,Rp),

– natural transformation P : A∞p ⇒ C∞p

P(M,J) : A
∞
p (M,J)→ A∞p (M,J) , φ 7→ P(M,J)(φ) = (�M +m2)φ+ J
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The inhomogeneous Klein-Gordon field: Phase space

� Consider the following covariant functor (affine dual of A∞p ):

– A∞,†p : LocSrcp → Vec, with A∞,†p (M,J) = C∞0 (M,Rp+1) and
A∞,†p (f : (M1, J1)→ (M2, J2)) = f∗ : C

∞
0 (M1,Rp+1)→ C∞0 (M2,Rp+1)

and its subfunctor Trivp : LocSrcp → Vec, with

Trivp(M,J) =
{
a⊗ ep+1 ∈ C∞0 (M,Rp+1) :

∫
volM a = 0

}
� The quotient A∞,†p /Trivp : LocSrcp → Vec has a further subfunctor P†(C∞p,0)

describing the equation of motion, where

P†(C∞p,0)(M,J) = P†(M,J)
(
C∞0 (M,Rp)

)
⊆ A∞,†p (M,J)/Trivp(M,J)

� The quotient
(
A∞,†p /Trivp

)
/P†(C∞p,0) : LocSrcp → Vec can be enriched to a

covariant functor PhSpp : LocSrcp → PreSymp by defining

σ(M,J)

(
[ϕ], [ψ]

)
=

∫
volM 〈ϕV ,EM (ψV )〉

Thm: (i) PhSpp satisfies the causality property and the time-slice axiom.

(ii) PhSpp has a nontrivial subfunctor Np : LocSrcp → Vec describing the kernel
of the presymplectic structures.

(iii) Np is naturally isomorphic to R : LocSrcp → Vec, with R(M) = R.
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Automorphism group of the PhSpp-functor
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Generalities

Def: An endomorphism of a covariant functor F : C→ D is a natural
transformation η : F⇒ F, i.e. a collection of morphisms
{ηC : F(C)→ F(C)}, such that for any morphism f : C1 → C2 in C

F(C1)

ηC1

��

F(f)
// F(C2)

ηC2

��

F(C1)
F(f)

// F(C2)

The collection of all endomorphisms of F is denoted by End(F).

Def: An automorphism of a covariant functor F : C→ D is a natural
transformation η : F⇒ F, such that all ηC are isomorphisms. The collection
of all automorphisms is the group Aut(F).

NB: For a (quantum) field theory functor, e.g. PhSpp : LocSrcp → PreSymp, the
group Aut(PhSpp) describes global symmetries of the theory on the
functorial level. This is comparable to the global gauge group of Minkowski
AQFT. See [Fewster: RMP 2013] for details on automorphism groups.
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Finding automorphisms of PhSpp

� Naively: Look at the action functional

S(M,J)[φ] =

∫
volM

(
− 1

2
〈∂µφ, ∂µφ〉+

m2

2
〈φ, φ〉+ 〈J, φ〉

)
→ O(p) symmetry is broken, for m = 0 it remains φ 7→ φ+ µ.

Expectation: Aut(PhSpp) = {idPhSpp
} for m 6= 0 and Rp for m = 0.

� Rather mysteriously (explanation later) we obtain the following:

Prop: For any covariant functor F : LocSrcp → PreSymp there exists a faithful
homomorphism η : Z2 → Aut(F) given by η(σ) = {σ idF(M,J)},
σ ∈ Z2 = {−1,+1}.

Prop: For m = 0 there exists a faithful homomorphism
η : Z2 × Rp → Aut(PhSpp) given by, for all [(ϕ, α)] ∈ PhSpp(M,J),

η(σ, µ)(M,J)

(
[(ϕ, α)]

)
=
[(
σ ϕ, σ α+ σ

∫
volM 〈ϕ, µ〉

)]
⇒ Aut(PhSpp) contains Z2 for m 6= 0 and Z2 × Rp for m = 0!

?? Are these all automorphisms?
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The relative Cauchy evolution: A tool for computing Aut

� For any globally hyperbolic perturbation (h, j) of (M,J) we have a diagram

(M,J) (M [h], J [j])

h, j

(M+[h, j], J+[h, j])

(M−[h, j], J−[h, j])

ι+
(M,J)

[h, j] ς+
(M,J)

[h, j]

ι−
(M,J)

[h, j] ς−
(M,J)

[h, j]

� Since PhSpp satisfies the time-slice axiom, we can define

rce(M,J)[h, j] =PhSpp(ι
−
(M,J)

[h, j]) ◦PhSpp(ς
−
(M,J)

[h, j])−1

◦PhSpp(ς
+
(M,J)

[h, j]) ◦PhSpp(ι
+
(M,J)

[h, j])−1

Prop: T(M,J)[h]
(
[(ϕ, α)]

)
:=

d

ds
rce(M,J)[s h, 0]

(
[(ϕ, α)]

)
|s=0

= −
[(

KG′M [h](EM (ϕ)),

∫
volM

gab hab

2
〈J,EM (ϕ)〉

)]
J(M,J)[j]

(
[(ϕ, α)]

)
:=

d

ds
rce(M,J)[0, s j]

(
[(ϕ, α)]

)
|s=0 = −

[(
0,

∫
volM 〈j,EM (ϕ)〉

)]
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How can we compute End(PhSpp) and Aut(PhSpp)?

� This is a quite complicated task! We have to characterize how
η ∈ End(PhSpp) interplays with (potential) symmetries of (M,J), general
morphisms in LocSrcp and the rce.

Lem: Let η be any endomorphism and f : (M,J)→ (M,J) an endomorphism of
(M,J). Then η(M,J) ◦PhSpp(f) = PhSpp(f) ◦ η(M,J).

“Functor endomorphisms commute with symmetries!”

Lem: η(M,J) ◦ rce(M,J)[h, j] = rce(M,J)[h, j] ◦ η(M,J).

“Functor endomorphisms commute with rce, and in particular its derivatives!”

Lem: Let η, η′ ∈ End(PhSpp) be such that η(M,J) = η′(M,J) for some (M,J).

(i) If f : (L, JL)→ (M,J) is morphism, then η(L,JL) = η′(L,JL).

(ii) If f : (M,J)→ (N, JN ) is Cauchy morphism, then η(N,JN ) = η′(N,JN ).

(iii) η(L,JL) = η′(L,JL) for any (L, JL), such that the Cauchy surfaces of L are
oriented diffeomorphic to those of M |O, with O ∈ O(M).

Thm: Every η ∈ End(PhSpp) is uniquely determined by its component on any
object (M,J).

⇒ Strategy: Look for endomorphisms End(PhSpp(M0, 0)) ((M0, 0) Minkowski
spacetime) that commute with rce and Poincaré transformations!
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Main result for End(PhSpp) and Aut(PhSpp)

Theorem
For the functor PhSpp : LocSrcp → PreSymp we have

End(PhSpp) = Aut(PhSpp) '

{
Z2 , for m 6= 0 ,

Z2 × Rp , for m = 0 .

There immediately pop up questions:

� Why is the automorphism group too big?

� Is this some sort of “hidden symmetry”?

� Or is it a flaw in our description of the inhomogeneous Klein-Gordon field?

What I want to show now is that it is indeed a flaw in our description!

In the construction of PhSpp we have forgotten that [(ϕ, α)] is supposed to
describe functionals on the affine space of solutions to �Mφ+m2φ+ J = 0.

Re-introducing this piece of information will provide us with a better functor!

A. Schenkel (Wuppertal University) Inhomogeneous Klein-Gordon field Seminar @ Pavia 13 12 / 18



Composition property of the PhSpp-functor?
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The functor PhSpp is not so good: Reason 2

Let me take a multiplet of p inhomogeneous KG fields, split it into 2 pieces, treat
them separately and afterwards compose the result. Do I get the same as when
treating the original multiplet? Let us formalize this physical idea:

� “Splitting into 2 pieces” is done by the covariant functor
Splitp,q : LocSrcp → LocSrcq × LocSrcp−q defined by

Splitp,q(M,J) =
(
(M,Jq), (M,Jp−q)

)
and Splitp,q(f) = (f, f).

� “Treating them separately” is
PhSpq ×PhSpp−q : LocSrcq × LocSrcp−q → PreSymp× PreSymp.

� “Compose the result” is ⊕ : PreSymp× PreSymp→ PreSymp defined by(
V ⊕W,σV⊕W

)
with σV⊕W

(
(v, w), (v′, w′)

)
= σV (v, v

′) + σW (w,w′).

⇒ We get another locally covariant field theory functor

PhSpp,q := ⊕ ◦
(
PhSpq ×PhSpp−q

)
◦Splitp,q : LocSrcp → PreSymp

Prop: The functors PhSpp and PhSpp,q are not naturally isomorphic. (Even
more, they are not even unnaturally isomorphic.)
Reason: The null space of PhSpp is 1 dimensional and the one of PhSpp,q is 2D.

⇒ PhSpp is not a good description of inhomogeneous KG fields.
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A better functor: A case for using Poisson algebras
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The canonical Poisson algebras

� There is an obvious covariant functor CanPois : PreSymp→ PoisAlg:

– CanPois(V, σV ) is the symmetric algebra S(V ) =
⊕∞

k=0 S
k(V ) with the

Poisson bracket defined by {v1, v2}σV = σV (v1, v2).

– CanPois(L : (V, σV )→ (W,σW )) is defined by
CanPois(L)(v1 · · · vk) = L(v1) · · ·L(vk).

Prop: a) PAp := CanPois ◦PhSpp : LocSrcp → PoisAlg satisfies the causality property
and the time-slice axiom.

b) Aut(PAp) contains a Z2 subgroup for m 6= 0 and a Z2 × Rp subgroup for
m = 0.

c) PAp violates the composition property, i.e. it is not isomorphic to

PAp,q := ⊗ ◦
(
PAq ×PAp−q

)
◦Splitp,q : LocSrcp → PoisAlg

� As expected, taking canonical Poisson algebras does not solve the problems.

However, the category of Poisson algebras is much richer than PreSymp and
it allows us to construct improved Poisson algebras!
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The improved Poisson algebras

Goal: Make the theory given by PAp := CanPois ◦PhSpp : LocSrcp → PoisAlg
remember that it came from functionals acting on affine solution spaces.

Def: The contravariant functor Solp : LocSrcp → Aff is the subfunctor of A∞p
defined by Solp(M,J) := {φ ∈ C∞(M,Rp) : P(M,J)(φ) = 0}.

� There is a natural pairing between the covariant functor PAp and the
contravariant functor Solp defined by, for all [(ϕ, α)] ∈ PAp(M,J) and
φ ∈ Solp(M,J),〈〈

[(ϕ, α)], φ
〉〉

(M,J)
:=
(∫

volM 〈ϕ, φ〉
)
+ α

Lem: Ip(M,J) :=
{
a ∈ PAp(M,J) :

〈〈
a,Solp(M,J)

〉〉
(M,J)

= {0}
}

is a Poisson

ideal. It is equal to
〈{

[(0, α)]− α : α ∈ R
}〉

.

Thm: a) The quotient Ap := PAp/Ip : LocSrcp → PoisAlg satisfies the causality
property and the time-slice axiom.

b) End(Ap) = Aut(Ap) '

{
{idAp} , for m 6= 0 ,

Rp , for m = 0 .

c) The composition property holds, i.e. Ap is naturally isomorphic to Ap,q.
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The quantized theory
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The canonical quantum algebras

� Everybody knows the covariant functor CCR : PreSymp→ ∗Alg associating
the quantized field polynomial algebras to presymplectic vector spaces.

Prop: a) PQp := CCR ◦PhSpp : LocSrcp → ∗Alg satisfies the causality property and
the time-slice axiom.

b) Aut(PQp) contains a Z2 subgroup for m 6= 0 and a Z2 × Rp subgroup for
m = 0.

c) PQp violates the composition property, i.e. it is not isomorphic to

PQp,q := ⊗ ◦
(
PQq ×PQp−q

)
◦Splitp,q : LocSrcp → ∗Alg

⇒ The canonical quantum algebras PQp do not give a satisfactory description
of the multiplet of p inhomogeneous KG fields.

Require a suitable modification of PQp, which remembers the fact that it
came from functionals on an affine solution space.
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The improved quantum algebras

Def: a) A state space Sp for PQp is a contravariant functor Sp : LocSrcp → State,
such that Sp(M,J) is a state space for PQp(M,J) and such that Sp(f) is
the restriction of the dual of PQp(f).

b) An admissible state space Sp for PQp is a state space, such that for all

ω ∈ Sp(M,J), ω
(
[(0, α)]

)
= α and ω

(
[(0, α)] [(0, β)]

)
= αβ.

Lem: (i) There exists a non-empty admissible state space. This is proven by using the
pull-back techniques of [BDS].

(ii) JSp(M,J) :=
⋂
ω∈Sp(M,J)

kerπω is a both-sided ∗-ideal. For any non-empty

admissible state space it is equal to
〈{

[(0, α)]− α : α ∈ R
}〉

.

Thm: The quotient Qp := PQp/J
Sp : LocSrcp → ∗Alg satisfies the causality

property and the time-slice axiom, i.e. it is a locally covariant QFT.

Conj: Qp has the correct automorphism group and satisfies the composition
property. Hence, Qp is a more suitable description of a multiplet of p
inhomogeneous KG fields than the functor PQp proposed in [BDS].

Rem: It can be shown that Qp(M,J) is (noncanonically) isomorphic to the algebra

of the homogeneous KG field PQlin
p (M). ⇒ All the information about the

sources is captured in the functorial structure, not in the individual algebras.
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Summary and outlook
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Summary and outlook

� I hope that I could convince you that the inhomogeneous Klein-Gordon field
could serve as a new standard model for LCQFT.

� We have understood well how to construct the relevant algebras, which are
not given by usual canonical quantization of (pre)symplectic vector spaces,
but by a more complicated procedure.

� We also have understood many structural properties of the inhomogeneous
Klein-Gordon field, like the existence of good classes of states, the
automorphism group and the relative Cauchy evolution.

� Our results (modulo some modifications due to gauge invariance) also apply
to U(1)-gauge theory and provide an instruction for how to improve the
algebras derived in [BDS,BDHS].

Grazie per la vostra attenzione!
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