Lecture Notes for MATH4017 Quantum Field Theory

\(\newcommand{\footnotename}{footnote}\) \(\def \LWRfootnote {1}\) \(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\let \LWRorighspace \hspace \) \(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\) \(\newcommand {\mathnormal }[1]{{#1}}\) \(\newcommand \ensuremath [1]{#1}\) \(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \) \(\newcommand {\setlength }[2]{}\) \(\newcommand {\addtolength }[2]{}\) \(\newcommand {\setcounter }[2]{}\) \(\newcommand {\addtocounter }[2]{}\) \(\newcommand {\arabic }[1]{}\) \(\newcommand {\number }[1]{}\) \(\newcommand {\noalign }[1]{\text {#1}\notag \\}\) \(\newcommand {\cline }[1]{}\) \(\newcommand {\directlua }[1]{\text {(directlua)}}\) \(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\) \(\newcommand {\protect }{}\) \(\def \LWRabsorbnumber #1 {}\) \(\def \LWRabsorbquotenumber "#1 {}\) \(\newcommand {\LWRabsorboption }[1][]{}\) \(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\) \(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\) \(\def \mathcode #1={\mathchar }\) \(\let \delcode \mathcode \) \(\let \delimiter \mathchar \) \(\def \oe {\unicode {x0153}}\) \(\def \OE {\unicode {x0152}}\) \(\def \ae {\unicode {x00E6}}\) \(\def \AE {\unicode {x00C6}}\) \(\def \aa {\unicode {x00E5}}\) \(\def \AA {\unicode {x00C5}}\) \(\def \o {\unicode {x00F8}}\) \(\def \O {\unicode {x00D8}}\) \(\def \l {\unicode {x0142}}\) \(\def \L {\unicode {x0141}}\) \(\def \ss {\unicode {x00DF}}\) \(\def \SS {\unicode {x1E9E}}\) \(\def \dag {\unicode {x2020}}\) \(\def \ddag {\unicode {x2021}}\) \(\def \P {\unicode {x00B6}}\) \(\def \copyright {\unicode {x00A9}}\) \(\def \pounds {\unicode {x00A3}}\) \(\let \LWRref \ref \) \(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\) \( \newcommand {\multicolumn }[3]{#3}\) \(\require {textcomp}\) \(\newcommand {\intertext }[1]{\text {#1}\notag \\}\) \(\let \Hat \hat \) \(\let \Check \check \) \(\let \Tilde \tilde \) \(\let \Acute \acute \) \(\let \Grave \grave \) \(\let \Dot \dot \) \(\let \Ddot \ddot \) \(\let \Breve \breve \) \(\let \Bar \bar \) \(\let \Vec \vec \) \(\newcommand {\slashed }[1]{\cancel {#1}}\) \(\newcommand {\tcbset }[1]{}\) \(\newcommand {\tcbsetforeverylayer }[1]{}\) \(\newcommand {\tcbox }[2][]{\boxed {\text {#2}}}\) \(\newcommand {\tcboxfit }[2][]{\boxed {#2}}\) \(\newcommand {\tcblower }{}\) \(\newcommand {\tcbline }{}\) \(\newcommand {\tcbtitle }{}\) \(\newcommand {\tcbsubtitle [2][]{\mathrm {#2}}}\) \(\newcommand {\tcboxmath }[2][]{\boxed {#2}}\) \(\newcommand {\tcbhighmath }[2][]{\boxed {#2}}\) \(\newcommand {\bbR }{\mathbb {R}}\) \(\newcommand {\bbC }{\mathbb {C}}\) \(\newcommand {\bbZ }{\mathbb {Z}}\) \(\newcommand {\sk }{\vspace {2mm}}\) \(\newcommand {\dd }{\mathrm {d}}\) \(\newcommand {\ii }{\mathrm {i}}\) \(\newcommand {\nn }{\nonumber }\) \(\newcommand {\HH }{\mathcal {H}}\) \(\newcommand {\LL }{\mathcal {L}}\) \(\newcommand {\TO }{\mathsf {T}}\) \(\newcommand {\Ker }{\mathrm {Ker}}\) \(\newcommand {\Imm }{\mathrm {Im}}\) \(\newcommand {\g }{\mathfrak {g}}\) \(\newcommand {\U }{\mathsf {U}}\) \(\newcommand {\SU }{\mathsf {SU}}\) \(\newcommand {\ket }[1]{\vert #1\rangle }\) \(\newcommand {\bra }[1]{\langle #1\vert }\) \(\newcommand {\braket }[2]{\langle #1\vert #2 \rangle }\) \(\newcommand {\expect }[3]{\langle #1\vert #2 \vert #3 \rangle }\) \(\newcommand {\noor }[1]{{:} #1 {:}}\)

Chapter 2 Classical field theory

2.1 Lagrangian formalism

The Lagrangian formalism for classical mechanics admits a straightforward generalization to classical field theory. To illustrate this formalism, we shall work on the \(d\)-dimensional Minkowski spacetime \(M=(\bbR ^d,\eta )\) and consider a field

\begin{flalign} \phi : M= \bbR ^d \longrightarrow \mathcal {Q}=\bbR ^k~,~~x\longmapsto \phi (x) \end{flalign} that takes values in a \(k\)-dimensional real vector space \(\mathcal {Q}=\bbR ^k\). Note that such \(\phi \) is a multicomponent field, i.e.

\begin{flalign} \phi (x) = \begin{pmatrix} \phi _1(x)\\ \phi _2(x)\\\vdots \\\phi _k(x) \end {pmatrix}\in \bbR ^k\quad , \end{flalign} and we shall use the index notation \(\phi _a(x)\), for \(a=1,\dots , k\), to denote the individual components.

An action functional for the field \(\phi \) has the general form

\begin{equation} S[\phi ] = \int _{\bbR ^d} \LL (\phi ,\partial \phi ) \,\dd x \quad , \end{equation}

where the integral is over the volume element

\begin{flalign} \dd x \,:=\,\dd t\,\dd x^1\cdots \dd x^{d-1} \end{flalign} of spacetime \(\bbR ^d\). The integrand \(\LL (\phi ,\partial \phi )\) is called the Lagrangian density and it is assumed to be a real-valued local function, i.e. its value \(\LL (\phi ,\partial \phi )(x)\) at the point \(x\in \bbR ^d\) is a function of \(\phi (x)\) and of its partial derivatives \(\partial _\mu \phi (x) := \frac {\partial \phi (x)}{\partial x^\mu }\) at the same point \(x\). We use square brackets \(S[\phi ]\) to denote the argument of the action in order to emphasize that \(S\) is a functional, i.e. a function on the set of functions/fields \(\phi :\bbR ^d\to \bbR ^k\). The classical dynamics of the field \(\phi \) is defined by extremizing the action

\begin{flalign} \delta S[\phi ] = 0\quad . \end{flalign} With a similar calculation as in the case of Lagrangian mechanics, one derives from this the Euler-Lagrange equations

\begin{equation} \label {eqn:ELequation} \partial _\mu \bigg (\frac {\partial \LL (\phi ,\partial \phi )}{\partial (\partial _\mu \phi _a)}\bigg ) -\frac {\partial \LL (\phi ,\partial \phi )}{\partial \phi _a} =0 \quad , \end{equation}

for all \(a=1,\dots ,k\). For your convenience, let me briefly repeat this calculation

\begin{flalign} \nn \delta S[\phi ] &= \int _{\bbR ^d} \bigg ( \frac {\partial \LL (\phi ,\partial \phi )}{\partial \phi _a} \,\delta \phi _a + \frac {\partial \LL (\phi ,\partial \phi )}{\partial (\partial _\mu \phi _a)} \,\delta (\partial _\mu \phi _a) \bigg )\,\dd x\\ \nn &=\int _{\bbR ^d} \bigg ( \frac {\partial \LL (\phi ,\partial \phi )}{\partial \phi _a} \,\delta \phi _a + \frac {\partial \LL (\phi ,\partial \phi )}{\partial (\partial _\mu \phi _a)} \,\partial _\mu (\delta \phi _a) \bigg )\,\dd x\\ \nn &=\int _{\bbR ^d} \bigg ( \frac {\partial \LL (\phi ,\partial \phi )}{\partial \phi _a} \,\delta \phi _a - \partial _\mu \bigg (\frac {\partial \LL (\phi ,\partial \phi )}{\partial (\partial _\mu \phi _a)}\bigg ) \delta \phi _a \bigg )\,\dd x\\ &=\int _{\bbR ^d} \bigg ( \frac {\partial \LL (\phi ,\partial \phi )}{\partial \phi _a} - \partial _\mu \bigg (\frac {\partial \LL (\phi ,\partial \phi )}{\partial (\partial _\mu \phi _a)}\bigg ) \bigg )~\delta \phi _a \,\dd x =0\quad , \end{flalign} where step three uses integration by parts together with the usual hypothesis that the variation \(\delta \phi _a\) vanishes at the boundary/infinity.

  • Example 2.1 (Real Klein-Gordon field). Consider a real scalar field \(\Phi (x)\in \bbR \) together with the quadratic action functional

    \begin{flalign} \label {eqn:KGaction} S_{\mathrm {KG}}[\Phi ] := \int _{\bbR ^d} \bigg (-\frac {1}{2} \,\eta ^{\mu \nu }\,\partial _\mu \Phi \,\partial _\nu \Phi - \frac {m^2}{2}\,\Phi ^2\bigg )\,\dd x = \int _{\bbR ^d} -\frac {1}{2}\,\Big (\partial ^\mu \Phi \,\partial _\mu \Phi +m^2\, \Phi ^2\Big )\,\dd x\quad , \end{flalign} where \(\eta ^{\mu \nu }\) denotes the inverse Minkowski metric and \(m\geq 0\) is a parameter that will be interpreted later as the mass of a particle. The first summand is called the kinetic term and the second summand is called the mass term. The corresponding Euler-Lagrange equation (2.6) reads as

    \begin{flalign} \label {eqn:KGequation} - \partial ^2\Phi + m^2\,\Phi \,:= -\eta ^{\mu \nu } \partial _\mu \partial _\nu \Phi + m^2\,\Phi =0 \end{flalign} and it is called the Klein-Gordon equation. Note that (2.9) is a linear partial differential equation on the Minkowski spacetime, which is a consequence of the fact that the action functional (2.8) is quadratic in the field. One can introduce nonlinearities by adding higher-order terms to the action functional, e.g.

    \begin{flalign} \label {eqn:KGactioninteractions} S_{\mathrm {KG}+\mathrm {int}}[\Phi ] := \int _{\bbR ^d} \bigg (-\frac {1}{2}\, \partial ^\mu \Phi \,\partial _\mu \Phi - \frac {m^2}{2}\,\Phi ^2 - V(\Phi )\bigg )\,\dd x \end{flalign} for a potential function \(V(\Phi )\) that is a polynomial of degree \(\geq 3\) in \(\Phi \). The resulting Euler-Lagrange equation then reads as

    \begin{flalign} - \partial ^2\Phi + m^2\,\Phi + V^\prime (\Phi ) = 0\quad , \end{flalign} which is a nonlinear partial differential equation because the derivative \(V^\prime (\Phi )\) is by our hypothesis a polynomial of degree \(\geq 2\) in \(\Phi \).

  • Example 2.2 (Electromagnetic potential). Consider a covector field \(A_\mu (x)\) and define the antisymmetric \((0,2)\)-tensor field

    \begin{flalign} \label {eqn:fieldstrength} F_{\mu \nu } := \partial _\mu A_\nu - \partial _\nu A_{\mu }\quad . \end{flalign} The physical interpretation of \(A_\mu \) is that of the electromagnetic potential and \(F_{\mu \nu }\) is the so-called field strength tensor. As a direct consequence of its definition, \(F_{\mu \nu }\) satisfies the identity

    \begin{flalign} \label {eqn:Maxwell1} \partial _\mu F_{\nu \rho } + \partial _\nu F_{\rho \mu } + \partial _\rho F_{\mu \nu } = 0\quad . \end{flalign} Consider further the quadratic action functional

    \begin{flalign} S_{\mathrm {MW}}[A] := \int _{\bbR ^d} -\frac {1}{4}\,\eta ^{\mu \rho }\,\eta ^{\nu \sigma }\,F_{\mu \nu }\,F_{\rho \sigma }\,\dd x = \int _{\bbR ^d} -\frac {1}{4}\,F^{\mu \nu }\,F_{\mu \nu }\,\dd x \end{flalign} whose Euler-Lagrange equations (2.6) read as

    \begin{flalign} \label {eqn:Maxwell2} \partial _\mu F^{\mu \nu } = 0\quad . \end{flalign} In spacetime dimension \(d=4\), the system of partial differential equations (2.13) and (2.15) is equivalent to Maxwell’s equations in vacuum, namely \(\nabla \cdot \mathbf {B} =0\), \(\nabla \times \mathbf {E} = -\frac {\partial \mathbf {B}}{\partial t}\), \(\nabla \cdot \mathbf {E} =0\) and \(\nabla \times \mathbf {B} = \frac {\partial \mathbf {E}}{\partial t}\). This example will be studied in more depth later in Chapter 6.

  • Example 2.3 (Complex-valued fields). The Lagrangian formalism for field theory also works for complex-valued fields \(\phi : \bbR ^d\to \bbC ^k\). Indeed, decomposing each component \(\phi _a(x) =: \rho _a(x) + \ii \,\chi _a(x)\) into its real part \(\rho _a\) and imaginary part \(\chi _a\) allows us to regard \(\phi \) as a \(2k\)-dimensional real field

    \begin{flalign} \tilde {\phi } : \bbR ^d\longrightarrow \bbR ^{2k}~,~~x\longmapsto \tilde {\phi }(x) = \begin{pmatrix} \rho _1(x)\\\vdots \\\rho _k(x)\\ \chi _1(x)\\ \vdots \\\chi _k(x) \end {pmatrix}\quad . \end{flalign} The formulas from this section then apply to \(\tilde {\phi }\).

    There is an equivalent, but simpler way to deal with complex-valued fields, which we are going to illustrate for a complex scalar field \(\Phi (x)\in \bbC \) whose complex conjugate we denote by \(\Phi ^\ast (x)\in \bbC \). Since the action functional is by definition real-valued, one has to combine \(\Phi (x)\) and \(\Phi ^\ast (x)\) in the Lagrangian density in order to obtain a real number. For example, the action functional

    \begin{flalign} \label {eqn:KGactioncomplexinteraction} S_{\mathrm {KG}_\bbC +\mathrm {int}}[\Phi ,\Phi ^\ast ] := \int _{\bbR ^d}\bigg (-\partial ^\mu \Phi ^\ast \,\partial _\mu \Phi - m^2\,\Phi ^\ast \,\Phi - V(\Phi ^\ast \,\Phi )\bigg )\,\dd x \end{flalign} achieves this by taking the absolute value of complex numbers. To obtain the Euler-Lagrange equations for this system, we treat \(\Phi \) and \(\Phi ^\ast \) as independent fields. The Euler-Lagrange equation for \(\Phi \) then reads as

    \begin{flalign} \nn 0 &= \partial _\mu \bigg (\frac {\partial \LL }{\partial (\partial _\mu \Phi )}\bigg ) - \frac {\partial \LL }{\partial \Phi } = \partial _\mu \Big (-\partial ^\mu \Phi ^\ast \Big ) + m^2 \,\Phi ^\ast + V^\prime (\Phi ^\ast \,\Phi )\,\Phi ^\ast \\ &=-\partial ^2\Phi ^\ast + m^2 \,\Phi ^\ast + V^\prime (\Phi ^\ast \,\Phi )\,\Phi ^\ast \quad \end{flalign} and the one for \(\Phi ^\ast \) reads as

    \begin{flalign} \nn 0 &= \partial _\mu \bigg (\frac {\partial \LL }{\partial (\partial _\mu \Phi ^\ast )}\bigg ) - \frac {\partial \LL }{\partial \Phi ^\ast } = \partial _\mu \Big (-\partial ^\mu \Phi \Big ) + m^2 \,\Phi + V^\prime (\Phi ^\ast \,\Phi )\,\Phi \\ &=-\partial ^2\Phi + m^2 \,\Phi + V^\prime (\Phi ^\ast \,\Phi )\,\Phi \quad . \end{flalign} Observe that the two equations (2.18) are the complex conjugates of each other. They also agree with the Euler-Lagrange equations that one would obtain by decomposing \(\Phi (x) = \rho (x) + \ii \,\chi (x)\) into its real and imaginary part. (This is a good exercise for you!) For a trivial potential \(V=0\), one obtains the so-called complex Klein-Gordon action

    \begin{flalign} \label {eqn:KGactioncomplex} S_{\mathrm {KG}_\bbC }[\Phi ,\Phi ^\ast ] := \int _{\bbR ^d} - \bigg (\partial ^\mu \Phi ^\ast \,\partial _\mu \Phi + m^2\,\Phi ^\ast \,\Phi \bigg )\,\dd x\quad , \end{flalign} whose Euler-Lagrange equations are the complex Klein-Gordon equations

    \begin{flalign} \label {eqn:KGequationcomplex} -\partial ^2\Phi + m^2 \,\Phi =0 \quad ,\qquad -\partial ^2\Phi ^\ast + m^2 \,\Phi ^\ast =0 \quad , \end{flalign} where again one follows from the other by complex conjugation.